Skip to main content

PHY Tradeoff and Resource Allocation for ISAC

  • Chapter
  • First Online:
Integrated Sensing and Communications

Abstract

In the upcoming next-generation (5G-Advanced and 6G) wireless networks, sensing as a service will play a more important role than ever before. This chapter presents the concept of sensing quality of service (QoS) in terms of diverse sensing tasks, and a unified framework for integrated sensing and communication (ISAC) resource allocation. Specifically, we adopt the traditional radar metrics such as the probability of detection, the Crámer-Rao bound (CRB) and posterior Crámer-Rao bound (PCRB) to measure the sensing QoS for detection, localization, and tracking, respectively. Then, resource allocation schemes based on fairness and comprehensiveness criteria are considered for the aforementioned sensing services, which can flexibly allocate the limited power and bandwidth resources according to both sensing and communication (S&C) QoSs. The numerical simulations are provided to evaluate the performance trade-off between S&C services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Cui, F. Liu, X. Jing, and J. Mu. Integrating sensing and communications for ubiquitous iot: Applications, trends, and challenges. IEEE Network, 35(5): 158-167, 2021.

    Article  Google Scholar 

  2. F. Liu et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond. IEEE Journal on Selected Areas in Communications, 40(6): 1728-1767, 2022.

    Article  Google Scholar 

  3. N. C. Luong, X. Lu, D. T. Hoang, D. Niyato, and D. I. Kim. Radio resource management in joint radar and communication: A comprehensive survey. IEEE Communications Surveys & Tutorials, 23(2): 780-814, 2021.

    Article  Google Scholar 

  4. D. Kivanc, G. Li, and H. Liu. Computationally efficient bandwidth allocation and power control for OFDMA. IEEE Transactions on Wireless Communications, 2(6): 1150-1158, 2003.

    Article  Google Scholar 

  5. Z. Shen, J. Andrews, and B. Evans. Adaptive resource allocation in multiuser ofdm systems with proportional rate constraints. IEEE Transactions on Wireless Communications, 4(6): 2726-2737, 2005.

    Article  Google Scholar 

  6. P. Phunchongharn, E. Hossain, and D. I. Kim. Resource allocation for device-to-device communications underlaying lte-advanced networks. IEEE Wireless Communications, 20(4): 91-100, 2013.

    Article  Google Scholar 

  7. H. Zhang, et al. Network slicing based 5g and future mobile networks: Mobility, resource management, and challenges. IEEE Communications Magazine, 55(8): 138-145, 2017.

    Article  Google Scholar 

  8. J. Yan, et al. Simultaneous multibeam resource allocation scheme for multiple target tracking. IEEE Transactions on Signal Processing, 63(12): 3110-3122, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Yan, et al. Cooperative target assignment and dwell allocation for multiple target tracking in phased array radar network. Signal Processing, 141: 74-83, 2017.

    Article  Google Scholar 

  10. H. Zhang, B. Zong, and J. Xie. Power and bandwidth allocation for multi-target tracking in collocated mimo radar. IEEE Transactions on Vehicular Technology, 69(9): 9795-9806, 2020.

    Article  Google Scholar 

  11. B. K. Chalise, M. G. Amin, and B. Himed. Performance tradeoff in a unified passive radar and communications system. IEEE Signal Processing Letters, 24(9): 1275-1279, 2017.

    Article  Google Scholar 

  12. Y. Liu, G. Liao, J. Xu, Z. Yang, and Y. Zhang. Adaptive OFDM integrated radar and communications waveform design based on information theory. IEEE Communications Letters, 21(10): 2174-2177, 2017.

    Article  Google Scholar 

  13. T. M. Cover.Elements of information theory. John Wiley & Sons, 1999.

    Google Scholar 

  14. M. A. Richards. Fundamentals of radar signal processing, second edition. McGraw-Hill Education, 2014.

    Google Scholar 

  15. A. Liu et al. A survey on fundamental limits of integrated sensing and communication. IEEE Communications Surveys & Tutorials, 24(2): 994-1034, 2022.

    Article  Google Scholar 

  16. P. Tichavsky, C. H. Muravchik, and A. Nehorai. Posterior Crámer-Rao bounds for discrete time nonlinear filtering. IEEE Transactions on Signal Processing, 46(5): 1386-1396, 1998.

    Article  Google Scholar 

  17. M. A. Richards. Fundamentals of radar signal processing, second edition. McGraw-Hill Education, 2014.

    Google Scholar 

  18. E. Fisher, A. Haimovich, R. Blum, L. Cimini, D. Chizhik, and R. Valenzuela. Spatial diversity in radars: models and detection performance. IEEE Transactions on Signal Processing, 54(3): 823-838, 2006.

    Article  MATH  Google Scholar 

  19. I. Bekkerman and J. Tabrikian. Target detection and localization using MIMO radar and sonars. IEEE Transactions on Signal Processing, 54(10): 3873-3883, 2006.

    Article  MATH  Google Scholar 

  20. M. I. Skolnik. Theoretical accuracy of radar measurements. IRE Transactions on Aeronautical and Navigational Electronics, 4: 123-129, 1960.

    Article  Google Scholar 

  21. Y. Xiong, N. Wu, Y. Shen, and M. Z. Win. Cooperative network synchronization: Asymptotic analysis. IEEE Transactions on Signal Processing, 66(3): 757-772, 2018.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dong, F., Liu, F., Masouros, C. (2023). PHY Tradeoff and Resource Allocation for ISAC. In: Liu, F., Masouros, C., Eldar, Y.C. (eds) Integrated Sensing and Communications. Springer, Singapore. https://doi.org/10.1007/978-981-99-2501-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2501-8_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2500-1

  • Online ISBN: 978-981-99-2501-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics