Skip to main content

Fundamental Limits for ISAC: Information and Communication Theoretic Perspective

  • Chapter
  • First Online:
Integrated Sensing and Communications
  • 2788 Accesses

Abstract

The integrated sensing and communication (ISAC) paradigm, where sensing and communication functions are synergistically implemented by possibly sharing the same frequency band and hardware, has emerged as one of key technologies in future wireless systems. While substantial efforts have been devoted to investigate various techniques under different scenarios and system architectures, the fundamental limits of such integrated systems remain generally unknown. In this chapter, we aim to present some recent progress from the information theoretical perspective. First, we provide a simple information-theoretic model for single-user channel and present the fundamental tradeoff between communication and sensing. Albeit simplified, the proposed information-theoretical model captures the relevant scenario where a transmitter, equipped with a radar receiver (monostatic sensing), wishes to use the backscattered signal for sensing while sending data via a common waveform. Then, we extend our study to more realistic setups ranging from imperfect channel state information at receiver, correlated channel states to two-user broadcast and multiple access channels. In the presence of multiple users, the full characterization of the tradeoff region is challenging even without sensing. Therefore, we focus our attention to highlight novel coding strategies that suitably balance between different operating points on the communication and sensing. Finally, we discuss some open problems and future research directions, such as more general modeling and tighter bounds for memoryless ISAC channels, information-theoretical bounds for block-varying/Markov ISAC channels, the interaction between information theory and artificial intelligence (AI) in ISAC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Flagship, “6G white paper on localization and sensing,” University of Oulu, Finland, no. 12, June 2020.

    Google Scholar 

  2. L. Zheng, M. Lops, Y. C. Eldar, and X. Wang, “Radar and communication co-existence: an overview: a review of recent methods,” vol. 36, no. 5, pp. 85–99, Sep. 2019.

    Google Scholar 

  3. K. V. Mishra, M. B. Shankar, V. Koivunen, B. Ottersten, and S. A. Vorobyov, “Towards millimeter wave joint radar-communications: A signal processing perspective,” vol. 36, no. 5, pp. 100–114, Sep. 2019.

    Google Scholar 

  4. F. Liu, C. Masouros, A. P. Petropulu, H. Griffiths, and L. Hanzo, “Joint radar and communication design: Applications, state-of-the-art, and the road ahead,” IEEE Trans. Commun., vol. 68, no. 6, pp. 3834–3862, 2020.

    Article  Google Scholar 

  5. A. Liu, Z. Huang, M. Li, Y. Wan, W. Li, T. X. Han, C. Liu, R. Du, D. K. P. Tan, J. Lu, Y. Shen, F. Colone, and K. Chetty, “A survey on fundamental limits of integrated sensing and communication,” IEEE Communications Surveys & Tutorials, vol. 24, no. 2, pp. 994–1034, 2022.

    Article  Google Scholar 

  6. D. Ma, N. Shlezinger, T. Huang, Y. Liu, and Y. C. Eldar, “Joint radar-communication strategies for autonomous vehicles: Combining two key automotive technologies,” IEEE Signal Process. Mag., vol. 37, no. 4, pp. 85–97, 2020.

    Article  Google Scholar 

  7. S. H. Dokhanchi, M. B. Shankar, K. V. Mishra, and B. Ottersten, “A mmWave automotive joint radar-communications system,” IEEE Trans. Aerosp. Electron. Syst., vol. 55, no. 3, pp. 1241–1260, June 2019.

    Google Scholar 

  8. C. Sturm and W. Wiesbeck, “Waveform design and signal processing aspects for fusion of wireless communications and radar sensing,” Proceedings of the IEEE, vol. 99, no. 7, pp. 1236–1259, July 2011.

    Google Scholar 

  9. Y. Liu, G. Liao, J. Xu, Z. Yang, and Y. Zhang, “Adaptive OFDM integrated radar and communications waveform design based on information theory,” IEEE Commun. Lett., vol. 21, no. 10, pp. 2174–2177, 2017.

    Article  Google Scholar 

  10. D. H. N. Nguyen and R. W. Heath, “Delay and doppler processing for multi-target detection with IEEE 802.11 OFDM signaling,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP), March 2017, pp. 3414–3418.

    Google Scholar 

  11. P. Raviteja, K. T. Phan, Y. Hong, and E. Viterbo, “Orthogonal time frequency space (OTFS) modulation based radar system,” in 2019 IEEE Radar Conference (RadarConf), 2019, pp. 1–6.

    Google Scholar 

  12. L. Gaudio, M. Kobayashi, C. Caire, and G. Colavolpe, “On the effectiveness of OTFS for joint radar parameter estimation and communication,” IEEE Trans. Wireless Commun., vol. 19, no. 9, pp. 5951–5965, 2020.

    Article  Google Scholar 

  13. B. Paul, A. R. Chiriyath, and D. W. Bliss, “Survey of RF communications and sensing convergence research,” IEEE Access, vol. 5, pp. 252–270, 2017.

    Article  Google Scholar 

  14. M. Kobayashi, G. Caire, and G. Kramer, “Joint state sensing and communication: Optimal tradeoff for a memoryless case,” in Proc. IEEE Int. Symp. Info. Theory (ISIT), 2018, pp. 111–115.

    Google Scholar 

  15. M. Kobayashi, H. Hamad, G. Kramer, and G. Caire, “Joint state sensing and communication over memoryless multiple access channels,” in Proc. IEEE Int. Symp. Info. Theory (ISIT), 2019, pp. 270–274.

    Google Scholar 

  16. M. Ahmadipour, M. Kobayashi, M. Wigger, and G. Caire, “An information-theoretic approach to joint sensing and communication,” IEEE Trans. Info. Theory, pp. 1, 2022.

    Google Scholar 

  17. M. R. Bell, “Information theory and radar waveform design,” IEEE Trans. Info. Theory, vol. 39, no. 5, pp. 1578–1597, 1993.

    Article  MATH  Google Scholar 

  18. D. W. Bliss, “Cooperative radar and communications signaling: The estimation and information theory odd couple,” in Radar Conf., 2014 IEEE. IEEE, 2014, pp. 0050–0055.

    Google Scholar 

  19. A. R. Chiriyath, B. Paul, G. M. Jacyna, and D. W. Bliss, “Inner bounds on performance of radar and communications co-existence.” IEEE Trans. Signal Process., vol. 64, no. 2, pp. 464–474, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Kumari, J. Choi, N. González-Prelcic, and R. W. Heath, “Ieee 802.11ad-based radar: An approach to joint vehicular communication-radar system,” IEEE Transactions on Vehicular Technology, vol. 67, no. 4, pp. 3012–3027, 2018.

    Article  Google Scholar 

  21. P. Kumari, D. H. Nguyen, and R. W. Heath, “Performance trade-off in an adaptive ieee 802.11 ad waveform design for a joint automotive radar and communication system,” in IEEE Int. Conf. Acoustics, Speech and Signal Proc. (ICASSP). IEEE, 2017, pp. 4281–4285.

    Google Scholar 

  22. P. Kumari, M. E. Eltayeb, and R. W. Heath, “Sparsity-aware adaptive beamforming design for ieee 802.11 ad-based joint communication-radar,” in Radar Conf. (RadarConf18), 2018 IEEE. IEEE, 2018, pp. 0923–0928.

    Google Scholar 

  23. H. Joudeh and F. M. J. Willems, “Joint communication and binary state detection,” IEEE Journal on Selected Areas in Information Theory, vol. 3, no. 1, pp. 113–124, 2022.

    Article  Google Scholar 

  24. M.-C. Chang, T. Erdoğan, S.-Y. Wang, and M. R. Bloch, “Rate and detection error-exponent tradeoffs of joint communication and sensing,” in 2022 2nd IEEE International Symposium on Joint Communications & Sensing (JC &S), 2022, pp. 1–6.

    Google Scholar 

  25. H. Wu and H. Joudeh, “On joint communication and channel discrimination,” arXiv preprint arXiv:2202.01112, 2022.

  26. A. R. Chiriyath, B. Paul, G. M. Jacyna, and D. W. Bliss, “Inner bounds on performance of radar and communications co-existence,” IEEE Transactions on Signal Processing, vol. 64, no. 2, pp. 464–474, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  27. Y.-H. Kim, A. Sutivong, and T. M. Cover, “State amplification,” IEEE Trans. Info. Theory, vol. 54, no. 5, pp. 1850–1859, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  28. W. Zhang, S. Vedantam, and U. Mitra, “Joint transmission and state estimation: A constrained channel coding approach,” IEEE Trans. Info. Theory, vol. 57, no. 10, pp. 7084–7095, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  29. C. Choudhuri, Y.-H. Kim, and U. Mitra, “Causal state communication,” IEEE Trans. Info. Theory, vol. 59, no. 6, pp. 3709–3719, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Kobayashi, G. Caire, and G. Kramer, “Joint state sensing and communication: Optimal tradeoff for a memoryless case,” in 2018 IEEE International Symposium on Information Theory (ISIT), 2018, pp. 111–115.

    Google Scholar 

  31. A. E. Gamal and Y.-H. Kim, Network information theory. Cambridge university press, 2011.

    Google Scholar 

  32. C. Shannon, “The zero error capacity of a noisy channel,” IRE Trans. Information Theory, vol. 2, no. 3, pp. 8–19, 1956.

    Article  MathSciNet  Google Scholar 

  33. Y. Liu, M. Li, A. Liu, J. Lu, and T. X. Han, “Information-theoretic limits of integrated sensing and communication with correlated sensing and channel states for vehicular networks,” IEEE Transactions on Vehicular Technology, vol. 71, no. 9, pp. 10 161–10 166, 2022.

    Google Scholar 

  34. M. Ahmadipour, M. Wigger, and M. Kobayashi, “Joint sensing and communication over memoryless broadcast channels,” in Proc. IEEE Info. Theory Workshop (ITW), 2021, pp. 1–5.

    Google Scholar 

  35. O. Shayevitz and M. Wigger, “On the capacity of the discrete memoryless broadcast channel with feedback,” IEEE Trans. Info. Theory, vol. 59, no. 3, pp. 1329–1345, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Gastpar, A. Lapidoth, Y. Steinberg, and M. Wigger, “Coding schemes and asymptotic capacity for the gaussian broadcast and interference channels with feedback,” IEEE Trans. Info. Theory, vol. 60, no. 1, pp. 54–71, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  37. F. Willems, E. van der Meulen, and J. Schalkwijk, “Achievable rate region for the multiple access channel with generalized feedback,” in Proc. Annual Allerton Conf. on Communication, Control and Computing, 1983, pp. 284–292.

    Google Scholar 

  38. M. Ahmadipour, M. Wigger, and M. Kobayashi, “Coding for sensing: An improved scheme for integrated sensing and communication over macs,” in Proc. IEEE Int. Symp. Inf. Theory, 2022.

    Google Scholar 

  39. G. Kramer, “Information networks with in-block memory,” IEEE Transactions on Information Theory, vol. 60, no. 4, pp. 2105–2120, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  40. E. Biglieri, J. Proakis, and S. Shamai, “Fading channels: information-theoretic and communications aspects,” IEEE Transactions on Information Theory, vol. 44, no. 6, pp. 2619–2692, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  41. Z. Huang, K. Wang, A. Liu, Y. Cai, R. Du, and T. X. Han, “Joint pilot optimization, target detection and channel estimation for integrated sensing and communication systems,” IEEE Trans. Wireless Commun., vol. 21, no. 12, 99. 10351–10365, Dec. 2022.

    Google Scholar 

  42. C. De Lima, D. Belot, R. Berkvens, A. Bourdoux, D. Dardari, M. Guillaud, M. Isomursu, E.-S. Lohan, Y. Miao, A. N. Barreto, M. R. K. Aziz, J. Saloranta, T. Sanguanpuak, H. Sarieddeen, G. Seco-Granados, J. Suutala, T. Svensson, M. Valkama, B. Van Liempd, and H. Wymeersch, “Convergent communication, sensing and localization in 6G systems: An overview of technologies, opportunities and challenges,” IEEE Access, vol. 9, pp. 26 902–26 925, 2021.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, A., Li, M., Kobayashi, M., Caire, G. (2023). Fundamental Limits for ISAC: Information and Communication Theoretic Perspective. In: Liu, F., Masouros, C., Eldar, Y.C. (eds) Integrated Sensing and Communications. Springer, Singapore. https://doi.org/10.1007/978-981-99-2501-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2501-8_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2500-1

  • Online ISBN: 978-981-99-2501-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics