Skip to main content

MmWave Mapping and SLAM for 5G and Beyond

  • Chapter
  • First Online:
Integrated Sensing and Communications

Abstract

Device localization and radar-like mapping are at the heart of integrated sensing and communication, enabling not only new services and applications, but also improving communication quality with reduced overheads. These forms of sensing are however susceptible to data association problems, due to the unknown relation between measurements and detected objects or targets. In this chapter, we provide an overview of the fundamental tools used to solve mapping, tracking, and simultaneous localization and mapping (SLAM) problems. We distinguish the different types of sensing problems and then focus on mapping and SLAM as running examples. Starting from the applicable models and definitions, we describe the different algorithmic approaches, with a particular focus on how to deal with data association problems. In particular, methods based on random finite set theory and Bayesian graphical models are introduced in detail. A numerical study with synthetic and experimental data is then used to compare these approaches in a variety of scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is to be noted that even though the complete UE state consists of the 3D position, 3D orientation and clock parameters, a lower dimensional approximation may be sufficient. We have assumed that the terrain within a small cell is flat, the clock drift is small, and orientation and position of the antenna are known and fixed with respect to the UE coordinate frame.

  2. 2.

    The experimental setting and used parameters are the same or very close to the ones used in previous works [5, 38, 40,41,42,43]. However, we want to note that our preliminary simulations indicate that the presented filters are able to cope much harder scenarios, for example when the clutter intensity is 20 times higher. For comparative reasons, we have opted to utilize the simulation scenario used in previous works and in future research, more realistic and challenging scenarios will be considered.

References

  1. Fan Liu, Yuanhao Cui, Christos Masouros, Jie Xu, Tony Xiao Han, Yonina C Eldar, and Stefano Buzzi. Integrated sensing and communications: Towards dual-functional wireless networks for 6G and beyond. IEEE Journal on Selected Areas in Communications, 2022.

    Google Scholar 

  2. Christian R Berger, Zhaohui Wang, Jianzhong Huang, and Shengli Zhou. Application of compressive sensing to sparse channel estimation. IEEE Communications Magazine, 48(11):164–174, 2010.

    Google Scholar 

  3. Satyam Dwivedi, Ritesh Shreevastav, Florent Munier, Johannes Nygren, Iana Siomina, Yazid Lyazidi, Deep Shrestha, Gustav Lindmark, Per Ernström, Erik Stare, et al. Positioning in 5G networks. IEEE Communications Magazine, 59(11):38–44, 2021.

    Article  Google Scholar 

  4. Christian Sturm and Werner Wiesbeck. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing. Proceedings of the IEEE, 99(7):1236–1259, 2011.

    Article  Google Scholar 

  5. Hyowon Kim, Karl Granström, Lin Gao, Giorgio Battistelli, Sunwoo Kim, and Henk Wymeersch. 5G mmWave cooperative positioning and mapping using multi-model PHD filter and map fusion. IEEE Transactions on Wireless Communications, 2020.

    Google Scholar 

  6. John Mullane, Ba-Ngu Vo, Martin D Adams, and Ba-Tuong Vo. A random-finite-set approach to Bayesian SLAM. IEEE Transactions on Robotics, 27(2):268–282, 2011.

    Google Scholar 

  7. Florian Meyer, Thomas Kropfreiter, Jason L Williams, Roslyn Lau, Franz Hlawatsch, Paolo Braca, and Moe Z Win. Message passing algorithms for scalable multitarget tracking. Proc. IEEE, 106(2):221–259, Feb. 2018.

    Google Scholar 

  8. Ronald PS Mahler. “Statistics 101” for multisensor, multitarget data fusion. IEEE Aerospace and Electronic Systems Magazine, 19(1):53–64, 2004.

    Article  Google Scholar 

  9. Robert W Heath, Nuria Gonzalez-Prelcic, Sundeep Rangan, Wonil Roh, and Akbar M Sayeed. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 10(3):436–453, 2016.

    Google Scholar 

  10. Yu Ge, Fuxi Wen, Hyowon Kim, Meifang Zhu, Fan Jiang, Sunwoo Kim, Lennart Svensson, and Henk Wymeersch. 5G SLAM using the clustering and assignment approach with diffuse multipath. Sensors (Basel, Switzerland), 20(16), August 2020.

    Google Scholar 

  11. Andreas Richter. Estimation of Radio Channel Parameters: Models and Algorithms. PhD thesis, Ilmenau University of Technology, 2005.

    Google Scholar 

  12. Alex B. Gershman, Michael Rübsamen, and Marius Pesavento. One- and two-dimensional direction-of-arrival estimation: An overview of search-free techniques. Signal Processing, 90(5):1338 – 1349, 2010.

    Article  MATH  Google Scholar 

  13. Fan Jiang, Yu Ge, Meifang Zhu, and Henk Wymeersch. High-dimensional channel estimation for simultaneous localization and communications. In IEEE Wireless Communications and Networking Conference (WCNC), pages 1–6, 2021.

    Google Scholar 

  14. Zohair Abu-Shaban, Xiangyun Zhou, Thushara Abhayapala, Gonzalo Seco-Granados, and Henk Wymeersch. Error bounds for uplink and downlink 3D localization in 5G millimeter wave systems. IEEE Transactions on Wireless Communications, 17(8):4939–4954, 2018.

    Article  Google Scholar 

  15. M.W.M.G. Dissanayake, P. Newman, S. Clark, H.F. Durrant-Whyte, and M. Csorba. A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation, 17(3):229–241, 2001.

    Article  Google Scholar 

  16. Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Wegbreit. FastSLAM: a factored solution to the simultaneous localization and mapping problem. In Eighteenth National Conference on Artificial Intelligence, page 593-598, USA, 2002. American Association for Artificial Intelligence.

    Google Scholar 

  17. J. Neira and J.D. Tardos. Data association in stochastic mapping using the joint compatibility test. IEEE Transactions on Robotics and Automation, 17(6):890–897, 2001.

    Article  Google Scholar 

  18. A Nuchter, Kai Lingemann, Joachim Hertzberg, and Hartmut Surmann. 6D slam with approximate data association. In ICAR’05. Proceedings., 12th International Conference on Advanced Robotics, 2005., pages 242–249. IEEE, 2005.

    Google Scholar 

  19. Giorgio Grisetti, Rainer Kümmerle, Cyrill Stachniss, and Wolfram Burgard. A tutorial on graph-based SLAM. IEEE Intelligent Transportation Systems Magazine, 2(4):31–43, 2010.

    Article  Google Scholar 

  20. Sebastian Thrun and Michael Montemerlo. The graph SLAM algorithm with applications to large-scale mapping of urban structures. The International Journal of Robotics Research, 25(5-6):403–429, 2006.

    Article  Google Scholar 

  21. Feng Lu and Evangelos Milios. Globally consistent range scan alignment for environment mapping. Autonomous robots, 4(4):333–349, 1997.

    Article  Google Scholar 

  22. Edwin Olson, John Leonard, and Seth Teller. Fast iterative alignment of pose graphs with poor initial estimates. In Proceedings IEEE International Conference on Robotics and Automation., pages 2262–2269, 2006.

    Google Scholar 

  23. Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Nonlinear constraint network optimization for efficient map learning. IEEE Transactions on Intelligent Transportation Systems, 10(3):428–439, 2009.

    Article  Google Scholar 

  24. Yuki Ono, Eduard Trulls, Pascal Fua, and Kwang Moo Yi. LF-Net: Learning local features from images. In Advances in Neural Information Processing Systems (NeurIPS), pages 1–6, 2018.

    Google Scholar 

  25. Kwang Moo Yi, Eduard Trulls, Vincent Lepetit, and Pascal Fua. LIFT: Learned invariant feature transform. In European conference on computer vision (ECCV), pages 467–483. Springer, 2016.

    Google Scholar 

  26. René Ranftl and Vladlen Koltun. Deep fundamental matrix estimation. In European conference on computer vision (ECCV), pages 284–299, 2018.

    Google Scholar 

  27. Michael Bloesch, Jan Czarnowski, Ronald Clark, Stefan Leutenegger, and Andrew J Davison. CodeSLAM - learning a compact, optimisable representation for dense visual slam. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pages 2560–2568, 2018.

    Google Scholar 

  28. Zachary Teed and Jia Deng. DROID-SLAM: Deep visual slam for monocular, stereo, and RGB-D cameras. In Advances in Neural Information Processing Systems (NeurIPS), volume 34, 2021.

    Google Scholar 

  29. Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. SuperGlue: Learning feature matching with graph neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pages 4938–4947, 2020.

    Google Scholar 

  30. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing Systems (NeurIPS), 30, 2017.

    Google Scholar 

  31. Juliano Pinto, Georg Hess, William Ljungbergh, Yuxuan Xia, Lennart Svensson, and Henk Wymeersch. Next generation multitarget trackers: Random finite set methods vs transformer-based deep learning. In IEEE International Conference on Information Fusion (FUSION). IEEE, 2021.

    Google Scholar 

  32. Ronald PS Mahler. Multitarget Bayes filtering via first-order multitarget moments. IEEE Transactions on Aerospace and Electronic Systems, 39(4):1152–1178, 2003.

    Article  Google Scholar 

  33. Ronald PS Mahler. Advances in Statistical Multisource-Multitarget Information Fusion. Artech House, 2014.

    Google Scholar 

  34. Hendrik Deusch, Stephan Reuter, and Klaus Dietmayer. The labeled multi-Bernoulli SLAM filter. IEEE Signal Processing Letters, 22(10):1561–1565, 2015.

    Article  Google Scholar 

  35. Hendrik Deusch. Random finite set-based localization and SLAM for highly automated vehicles. PhD thesis, Universität Ulm, 2016.

    Google Scholar 

  36. Diluka Moratuwage, Martin Adams, and Felipe Inostroza. \(\delta \)-generalised labelled multi-Bernoulli simultaneous localisation and mapping. In International Conference on Control, Automation and Information Sciences (ICCAIS), pages 175–182, 2018.

    Google Scholar 

  37. Diluka Moratuwage, Martin Adams, and Felipe Inostroza. \(\delta \)-generalized labeled multi-Bernoulli simultaneous localization and mapping with an optimal kernel-based particle filtering approach. Sensors, 19(10):2290, 2019.

    Article  Google Scholar 

  38. Yu Ge, Ossi Kaltiokallio, Hyowon Kim, Fan Jiang, Jukka Talvitie, Mikko Valkama, Lennart Svensson, Sunwoo Kim, and Henk Wymeersch. A computationally efficient EK-PMBM filter for bistatic mmWave radio SLAM. IEEE Journal on Selected Areas in Communications, 2022.

    Google Scholar 

  39. Yu Ge, Hyowon Kim, Fuxi Wen, Lennart Svensson, Sunwoo Kim, and Henk Wymeersch. Exploiting diffuse multipath in 5G SLAM. In IEEE Global Communications Conference, pages 1–6, 2020.

    Google Scholar 

  40. H. Kim, K. Granström, L. Gao, G. Battistelli, S. Kim, and H. Wymeersch. Joint CKF-PHD filter and map fusion for 5G multi-cell SLAM. In ICC 2020 - 2020 IEEE International Conference on Communications, pages 1–6, 2020.

    Google Scholar 

  41. H. Kim, K. Granström, S. Kim, and H. Wymeersch. Low-complexity 5G SLAM with CKF-PHD filter. In IEEE International Conference on Acoustics, Speech and Signal Processing, pages 5220–5224, 2020.

    Google Scholar 

  42. Ossi Kaltiokallio, Yu Ge, Jukka Talvitie, Henk Wymeersch, and Mikko Valkama. mmWave simultaneous localization and mapping using a computationally efficient EK-PHD filter. In IEEE International Conference on Information Fusion (Fusion), pages 1–6, 2021.

    Google Scholar 

  43. Yu Ge, Yibo Wu, Fan Jiang, Ossi Kaltiokallio, Jukka Talvitie, Mikko Valkama, Lennart Svensson, and Henk Wymeersch. Iterated posterior linearization PMB filter for 5G SLAM. In IEEE International Conference on Communications, page 877–882, 2022.

    Google Scholar 

  44. Frank R Kschischang, Brendan J Frey, and H-A Loeliger. Factor graphs and the sum-product algorithm. IEEE Trans. Int. Theory, 47(2):498–519, Feb. 2001.

    Google Scholar 

  45. Erik Leitinger, Florian Meyer, Franz Hlawatsch, Klaus Witrisal, Fredrik Tufvesson, and Moe Z Win. A belief propagation algorithm for multipath-based SLAM. IEEE Trans. Wireless Commun., 18(12):5613–5629, Sep. 2019.

    Google Scholar 

  46. Erik Leitinger, Stefan Grebien, and Klaus Witrisal. Multipath-based SLAM exploiting AoA and amplitude information. In Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), pages 1–7, Shanghai, China, May 2019.

    Google Scholar 

  47. Jason L Williams. Marginal multi-Bernoulli filters: RFS derivation of MHT, JIPDA, and association-based MeMBer. IEEE Transactions on Aerospace and Electronic Systems, 51(3):1664–1687, 2015.

    Google Scholar 

  48. Ángel F García-Fernández, Jason L Williams, Karl Granström, and Lennart Svensson. Poisson multi-Bernoulli mixture filter: Direct derivation and implementation. IEEE Transactions on Aerospace and Electronic Systems, 54(4):1883–1901, 2018.

    Google Scholar 

  49. Simo Särkkä. Bayesian Filtering and Smoothing. Cambridge University Press, 2013.

    Google Scholar 

  50. M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2):174–188, 2002.

    Article  Google Scholar 

  51. Thomas Peter Minka. A family of algorithms for approximate Bayesian inference. PhD thesis, Massachusetts Institute of Technology, 2001.

    Google Scholar 

  52. B.-N. Vo and W.-K. Ma. The Gaussian mixture probability hypothesis density filter. IEEE Transactions on Signal Processing, 54(11):4091–4104, 2006.

    Article  MATH  Google Scholar 

  53. Maryam Fatemi, Karl Granström, Lennart Svensson, Francisco JR Ruiz, and Lars Hammarstrand. Poisson multi-Bernoulli mapping using Gibbs sampling. IEEE Transactions on Signal Processing, 65(11):2814–2827, 2017.

    Google Scholar 

  54. Katta G Murty. Letter to the editor-an algorithm for ranking all the assignments in order of increasing cost. Operations Research, 16(3):682–687, 1968.

    Google Scholar 

  55. Jason L Williams. Hybrid Poisson and multi-Bernoulli filters. In International Conference on Information Fusion, pages 1103–1110. IEEE, 2012.

    Google Scholar 

  56. Jason L Williams. An efficient, variational approximation of the best fitting multi-Bernoulli filter. IEEE Transactions on Signal Processing, 63(1):258–273, 2014.

    Google Scholar 

  57. Michael Roth, Gustaf Hendeby, and Fredrik Gustafsson. EKF/UKF maneuvering target tracking using coordinated turn models with polar/cartesian velocity. In 17th International Conference on Information Fusion, 2014.

    Google Scholar 

  58. Simo Särkkä. Bayesian Filtering and Smoothing. Institute of Mathematical Statistics Textbooks. Cambridge University Press, 2013.

    Book  MATH  Google Scholar 

  59. Fuxi Wen and Henk Wymeersch. 5G synchronization, positioning, and mapping from diffuse multipath. IEEE Wireless Communications Letters, 10(1):43–47, 2020.

    Article  Google Scholar 

  60. Anastasios Kakkavas, Henk Wymeersch, Gonzalo Seco-Granados, Mario H Castañeda García, Richard A Stirling-Gallacher, and Josef A Nossek. Power allocation and parameter estimation for multipath-based 5G positioning. IEEE Transactions on Wireless Communications, 2021.

    Google Scholar 

  61. Abu Sajana Rahmathullah, Ángel F. García-Fernández, and Lennart Svensson. Generalized optimal sub-pattern assignment metric. In International Conference on Information Fusion (Fusion), pages 1–8, 2017.

    Google Scholar 

  62. Jukka Talvitie, Ossi Kaltiokallio, Elizaveta Rastorgueva-Foi, Carlos Baquero Barneto, Musa Furkan Keskin, Henk Wymeersch, and Mikko Valkama. Indoor mapping with a mobile radar using an EK-PHD filter. In 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pages 1–6, 2021.

    Google Scholar 

  63. Carlos Baquero Barneto, Elizaveta Rastorgueva-Foi, Furkan Keskin, Taneli Riihonen, Matias Turunen, Jukka Talvitie, Henk Wymeersch, and Mikko Valkama. Millimeter-wave mobile sensing and environment mapping: Models, algorithms and validation. IEEE Transactions on Vehicular Technology, 71(4):3900–3916, 2022.

    Google Scholar 

  64. Anna Guerra, Francesco Guidi, Antonio Clemente, Raffaele D’Errico, Laurent Dussopt, and Davide Dardari. Millimeter-wave backscattering measurements with transmitarrays for personal radar applications. In IEEE Globecom Workshops, pages 1–6, 2015.

    Google Scholar 

  65. Carlos Baquero Barneto, Taneli Riihonen, Matias Turunen, Mike Koivisto, Jukka Talvitie, and Mikko Valkama. Radio-based sensing and indoor mapping with millimeter-wave 5G NR signals. In International Conference on Localization and GNSS, 2020.

    Google Scholar 

  66. Ossi Kaltiokallio, Jukka Talvitie, Yu Ge, Henk Wymeersch, and Mikko Valkama. mmwave mapping using PHD with smoothed track confirmation and multi-bounce suppression. In 2022 IEEE International Conference on Communications, Workshop on Emerging Topics in 6G Communications, 2022.

    Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by the European Commission through the H2020 project Hexa-X (Grant Agreement no. 101015956) and the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by Knut and Alice Wallenberg Foundation. The work was also supported by the Academy of Finland under the projects #319994, #338224, #323244, and #328214.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henk Wymeersch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ge, Y. et al. (2023). MmWave Mapping and SLAM for 5G and Beyond. In: Liu, F., Masouros, C., Eldar, Y.C. (eds) Integrated Sensing and Communications. Springer, Singapore. https://doi.org/10.1007/978-981-99-2501-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2501-8_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2500-1

  • Online ISBN: 978-981-99-2501-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics