Skip to main content

Perceptive Mobile Networks

  • Chapter
  • First Online:
Integrated Sensing and Communications
  • 2441 Accesses

Abstract

In this chapter, we will provide an introduction on how to realize integrated sensing and communication in mobile networks. We will first introduce a framework including the network structure and required modifications for integrating sensing into the current communication-only mobile networks. Based on the framework, we will then discuss detailed methods for realizing sensing underlain by communication signals, in both downlink and uplink directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In uplink sensing, there may be less than N vectors available and they may be dis-continuous in index.

References

  1. M. L. Rahman, J. A. Zhang, X. Huang, Y. J. Guo, and R. W. Heath Jr. Framework for a perceptive mobile network using joint communication and radar sensing. IEEE Trans. on Aerospace and Electronic Systems, 56(3):1926–1941, 2020.

    Google Scholar 

  2. J. Andrew Zhang, Md Lushanur Rahman, Kai Wu, Xiaojing Huang, Y. Jay Guo, Shanzhi Chen, and Jinhong Yuan. Enabling joint communication and radar sensing in mobile networks -a survey. IEEE Commun. Surv. Tutor., pages 1–1, early access, 2021.

    Google Scholar 

  3. Fan Liu, Yuanhao Cui, Christos Masouros, Jie Xu, Tony Xiao Han, Yonina C. Eldar, and Stefano Buzzi. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond. IEEE Journal on Selected Areas in Communications, 40(6):1728–1767, 2022.

    Google Scholar 

  4. S. Yousefi, H. Narui, S. Dayal, S. Ermon, and S. Valaee. A survey on behavior recognition using WiFi channel state information. IEEE Communications Magazine, 55(10):98–104, 2017.

    Article  Google Scholar 

  5. E. Grossi, M. Lops, L. Venturino, and A. Zappone. Opportunistic radar in IEEE 802.11ad networks. IEEE Trans. on Signal Processing, 66(9):2441–2454, 2018.

    Google Scholar 

  6. Y. Liu, G. Liao, Y. Chen, J. Xu, and Y. Yin. Super-resolution range and velocity estimations with OFDM integrated radar and communications waveform. IEEE Trans. on Vehicular Technology, 69(10):11659–11672, 2020.

    Article  Google Scholar 

  7. Md Lushanur Rahman, J. Andrew Zhang, Xiaojing Huang, Y. Jay Guo, and Zhiping Lu. Joint communication and radar sensing in 5G mobile network by compressive sensing. IET Communications, 14(22):3977–3988, 2020.

    Google Scholar 

  8. L. Zheng and X. Wang. Super-resolution delay-doppler estimation for OFDM passive radar. IEEE Trans. on Signal Processing, 65(9):2197–2210, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Nion and N. D. Sidiropoulos. Tensor algebra and multidimensional harmonic retrieval in signal processing for MIMO radar. IEEE Trans. on Signal Processing, 58(11):5693–5705, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  10. Benyuan Liu, Zhilin Zhang, Gary Xu, Hongqi Fan, and Qiang Fu. Energy efficient telemonitoring of physiological signals via compressed sensing: A fast algorithm and power consumption evaluation. Biomedical Signal Processing and Control, 11(Supplement C):80 – 88, 2014.

    Google Scholar 

  11. Olutayo O. Oyerinde and Stanley H. Mneney. Subspace tracking-based decision directed CIR estimator and adaptive CIR prediction. IEEE Trans. on Vehicular Technology, 61(5):2097–2107, 2012.

    Article  Google Scholar 

  12. Jos Akhtman and Lajos Hanzo. Decision Directed Channel Estimation Aided OFDM Employing Sample-Spaced and Fractionally-Spaced CIR Estimators. IEEE Trans. on Wireless Communications, 6(4):1171–1175, 2007.

    Article  Google Scholar 

  13. Xiang Li, Daqing Zhang, Qin Lv, Jie Xiong, Shengjie Li, Yue Zhang, and Hong Mei. IndoTrack: Device-free indoor human tracking with commodity Wi-Fi. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 1(3), September 2017.

    Google Scholar 

  14. Z. Ni, J. A. Zhang, X. Huang, K. Yang, and J. Yuan. Uplink sensing in perceptive mobile networks with asynchronous transceivers. IEEE Trans. on Signal Processing, pages 1–1, 2021.

    Google Scholar 

  15. Zhongqin Wang, Jian Andrew Zhang, Min Xu, and Jay Guo. Single-target real-time passive wifi tracking. IEEE Trans. on Mobile Computing, pages 1–1, 2022.

    Google Scholar 

  16. Youwei Zeng, Dan Wu, Jie Xiong, Enze Yi, Ruiyang Gao, and Daqing Zhang. FarSense: Pushing the range limit of WiFi-based respiration sensing with CSI ratio of two antennas. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 3(3), September 2019.

    Google Scholar 

  17. Youwei Zeng, Dan Wu, Jie Xiong, Jinyi Liu, Zhaopeng Liu, and Daqing Zhang. MultiSense: Enabling multi-person respiration sensing with commodity WiFi. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 4(3), September 2020.

    Google Scholar 

  18. Kun Qian, Chenshu Wu, Yi Zhang, Guidong Zhang, Zheng Yang, and Yunhao Liu. Widar2.0: Passive human tracking with a single Wi-Fi link. In Proc. of the 16th Annual International Conference on Mobile Systems, Applications, and Services, page 350-361. Association for Computing Machinery, 2018.

    Google Scholar 

  19. S. Ji, Y. Xue, and L. Carin. Bayesian compressive sensing. IEEE Trans. on Signal Processing, 56(6):2346–2356, 2008.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported partially by the Australian Government through the Australian Research Council’s Discovery Projects funding scheme (project DP210101411).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Andrew Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, J.A., Ni, Z., Wu, K., Huang, X., Guo, Y.J. (2023). Perceptive Mobile Networks. In: Liu, F., Masouros, C., Eldar, Y.C. (eds) Integrated Sensing and Communications. Springer, Singapore. https://doi.org/10.1007/978-981-99-2501-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2501-8_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2500-1

  • Online ISBN: 978-981-99-2501-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics