Skip to main content

Millimeter-Wave and THz-Band Joint Radar-Communications

  • Chapter
  • First Online:
Integrated Sensing and Communications

Abstract

The fifth-generation and beyond (B5G) wireless networks aim to achieve ultra-high data transmission rates, reduce power consumption, and improved spectral efficiency. In this context, millimeter-wave (mmWave) and terahertz (THz) bands are key enablers to meeting B5G requirements. These bands offer ultrawide bandwidths and require large antenna arrays that yield very narrow beamwidth. As a result, mmWave and THz bands are also preferred for high-resolution sensing applications. Although large portions of the mmWave/THz spectrum are unlicensed and even unallocated, there are concerted efforts to efficiently utilize it and avoid contested spectral environments like the ones seen in sub-6 GHz bands. In this context, the joint radar-communications (JRC) paradigm at these frequencies requires considering unique characteristics of channel propagation, waveform design, receiver processing, and hardware implementations. This chapter provides a synopsis of mmWave/THz JRC considerations and respective enabling technologies. We discuss the JRC-specific differences between both bands, signal processing techniques, and use cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akyildiz, I.F., Han, C., Hu, Z., Nie, S., Jornet, J.M.: Terahertz band communication: An old problem revisited and research directions for the next decade. IEEE Trans. Commun. 70(6), 4250–4285 (2022)

    Google Scholar 

  2. Akyildiz, I.F., Jornet, J.M.: Realizing ultra-massive MIMO (1024\(\times \) 1024) communication in the (0.06-10) terahertz band. Nano Commun. Netw. 8, 46–54 (2016)

    Google Scholar 

  3. Alkhateeb, A., Ayach, O.E., Leus, G., Heath, R.W.: Hybrid precoding for millimeter wave cellular systems with partial channel knowledge. In: IEEE Inf. Th. Appl. Workshop, pp. 1–5 (2013)

    Google Scholar 

  4. Appleby, R., Wallace, H.B.: Standoff detection of weapons and contraband in the 100 GHz to 1 THz region. IEEE Trans. Antennas Propag. 55(11), 2944–2956 (2007)

    Google Scholar 

  5. Bazzi, A., Kärnfelt, C., Peden, A., Chonavel, T., Galaup, P., Bodereau, F.: Estimation techniques and simulation platforms for 77 GHz FMCW ACC radars. Euro. Phys. J. Ap. Phys. 57(1), 11001 (2012)

    Google Scholar 

  6. Bernhard, J., Reed, J., Park, J.M., Clegg, A., Weisshaar, A., Abouzeid, A.: Final report of the National Science Foundation workshop on Enhancing Access to the Radio Spectrum (EARS). Tech. rep., National Science Foundation, Arlington, Virginia (2010)

    Google Scholar 

  7. Bhattacharjee, S., Mishra, K.V., Annavajjala, R., Murthy, C.R.: Evaluation of orthogonal chirp division multiplexing for automotive integrated sensing and communications. In: IEEE Int. Conf. Acoust. Speech Signal Process., pp. 8742–8746 (2022)

    Google Scholar 

  8. Bhattacharjee, S., Mishra, K.V., Annavajjala, R., Murthy, C.R.: Multi-carrier wideband OCDM-based THz automotive radar. In: IEEE Int. Conf. Acoust. Speech Signal Process. (2023). In press

    Google Scholar 

  9. Bică, M., Huang, K., Koivunen, V., Mitra, U.: Mutual information based radar waveform design for joint radar and cellular communication systems. In: IEEE Int. Conf. on Acoust. Speech Signal Process., pp. 3671–3675 (2016)

    Google Scholar 

  10. Björnson, E., Demir, Ö.T., Sanguinetti, L.: A primer on near-field beamforming for arrays and reconfigurable intelligent surfaces. In: Asilomar Conf. Signals Syst. and Comput., pp. 105–112 (2021)

    Google Scholar 

  11. Busari, S.A., Huq, K.M.S., Mumtaz, S., Rodriguez, J., Fang, Y., Sicker, D.C., Al-Rubaye, S., Tsourdos, A.: Generalized hybrid beamforming for vehicular connectivity using THz massive MIMO. IEEE Trans. Veh. Technol. 68(9), 8372–8383 (2019)

    Google Scholar 

  12. Cohen, D., Mishra, K.V., Eldar, Y.C.: Spectrum sharing radar: Coexistence via Xampling. IEEE Trans. Aerosp. Electron. Syst. 29, 1279–1296 (2018)

    Google Scholar 

  13. Cui, M., Dai, L., Schober, R., Hanzo, L.: Near-field wideband beamforming for extremely large antenna arrays. arXiv preprint arXiv:2109.10054 (2021)

  14. Dai, L., Tan, J., Chen, Z., Poor, H.V.: Delay-phase precoding for wideband THz massive MIMO. IEEE Trans. Wireless Commun. 21(9), 7271–7286 (2022)

    Google Scholar 

  15. Daniels, R.C., Heath Jr, R.W.: 60 GHz wireless communications: Emerging requirements and design recommendations. IEEE Veh. Tech. Mag. 2(3) (2007)

    Google Scholar 

  16. Davis, M.: Foliage penetration radar: Detection and characterization of objects under trees. The Institution of Engineering and Technology (2011)

    Google Scholar 

  17. Dokhanchi, S.H., Bhavani Shankar, M.R., Mishra, K.V., Ottersten, B.: Multi-constraint spectral co-design for colocated MIMO radar and MIMO communications. In: IEEE Int. Conf. Acoust. Speech Signal Process., pp. 4567–4571 (2020)

    Google Scholar 

  18. Dokhanchi, S.H., Bhavani Shankar, M.R., Nijsure, Y.A., Stifter, T., Sedighi, S., Ottersten, B.: Joint automotive radar-communications waveform design. In: IEEE Int. Symp. Pers. Indoor Mob. Radio Commun., pp. 1–7 (2017)

    Google Scholar 

  19. Dokhanchi, S.H., Mysore, B.S., Mishra, K.V., Ottersten, B.: A mmWave automotive joint radar-communications system. IEEE Trans. Aerosp. Electron. Syst. 55(3), 1241–1260 (2019)

    Google Scholar 

  20. Donnet, B., Longstaff, I.: Combining MIMO radar with OFDM communications. In: IEEE Radar Conf. (2006)

    Google Scholar 

  21. Dovelos, K., Matthaiou, M., Ngo, H.Q., Bellalta, B.: Channel estimation and hybrid combining for wideband terahertz massive MIMO systems. IEEE J. Sel. Areas Commun. 39(6), 1604–1620 (2021)

    Google Scholar 

  22. Duggal, G., Vishwakarma, S., Mishra, K.V., Ram, S.S.: Doppler-resilient 802.11ad-based ultrashort range automotive joint radar-communications system. IEEE Trans. Aerosp. Electron. Syst. 56(5), 4035–4048 (2020)

    Google Scholar 

  23. Elbir, A.M., Mishra, K.V.: Joint antenna selection and hybrid beamformer design using unquantized and quantized deep learning networks. IEEE Trans. Wireless Commun. 19(3), 1677–1688 (2020)

    Google Scholar 

  24. Elbir, A.M., Mishra, K.V., Abdallah, A., Celik, A., Eltawil, A.M.: Spatial path index modulation in mmWave/THz-band integrated sensing and communications. arXiv preprint arXiv:2303.12328 (2023)

  25. Elbir, A.M., Mishra, K.V., Chatzinotas, S.: Terahertz-band joint ultra-massive MIMO radar-communications: Model-based and model-free hybrid beamforming. IEEE J. Sel. Top. Signal Process. 15(6), 1468–1483 (2021)

    Google Scholar 

  26. Elbir, A.M., Mishra, K.V., Chatzinotas, S.: NBA-OMP: Near-field beam-split-aware orthogonal matching pursuit for wideband THz channel estimation. In: IEEE Int. Conf. Acoust. Speech Signal Process. pp. 1–5 (2023)

    Google Scholar 

  27. Elbir, A.M., Mishra, K.V., Chatzinotas, S., Bennis, M.: Terahertz-band integrated sensing and communications: Challenges and opportunities. arXiv preprint arXiv:2208.01235 (2022)

  28. Elbir, A.M., Mishra, K.V., Shankar, M.B., Chatzinotas, S.: The rise of intelligent reflecting surfaces in integrated sensing and communications paradigms. IEEE Netw. (2022)

    Google Scholar 

  29. Elbir, A.M., Mishra, K.V., Vorobyov, S.A., Heath Robert Jr., W.: Twenty-five years of advances in beamforming: From convex and nonconvex optimization to learning techniques, IEEE Signal Process. Mag., 40(4), pp. 118–131 (2023)

    Google Scholar 

  30. Faisal, A., Sarieddeen, H., Dahrouj, H., Al-Naffouri, T.Y., Alouini, M.S.: Ultramassive MIMO systems at Terahertz bands: Prospects and challenges. IEEE Veh. Technol. Mag. 15(4), 33–42 (2020)

    Google Scholar 

  31. Gao, F., Wang, B., Xing, C., An, J., Li, G.Y.: Wideband beamforming for hybrid massive MIMO terahertz communications. IEEE J. Sel. Areas Commun. 39(6), 1725–1740 (2021)

    Google Scholar 

  32. Griffiths, H., Cohen, L., Watts, S., Mokole, E., Baker, C., Wicks, M., Blunt, S.: Radar spectrum engineering and management: Technical and regulatory issues. Proc. IEEE 103(1), 85–102 (2015)

    Google Scholar 

  33. Han, C., Jornet, J.M., Akyildiz, I.: Ultra-massive MIMO channel modeling for graphene-enabled terahertz-band communications. In: IEEE Veh. Technol. Conf. - Spring, pp. 1–5 (2018)

    Google Scholar 

  34. Han, C., Yan, L., Yuan, J.: Hybrid beamforming for terahertz wireless communications: Challenges, architectures, and open problems. IEEE Wireless Communications 28(4), 198–204 (2021)

    Google Scholar 

  35. Hashemi, H., Chu, T.s., Roderick, J.: Integrated true-time-delay-based ultra-wideband array processing. IEEE Commun. Mag. 46(9), 162–172 (2008)

    Google Scholar 

  36. Hassanien, A., Amin, M.G., Zhang, Y.D., Ahmad, F.: Dual-function radar communication: Information embedding using sidelobe control and waveform diversity. IEEE Trans. Signal Process. 64(8), 2168–2181 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Hassanien, A., Vorobyov, S.A.: Phased-MIMO radar: A tradeoff between phased-array and MIMO radars. IEEE Trans. Signal Process. 58(6), 3137–3151 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Heath, R.W., González-Prelcic, N., Rangan, S., Roh, W., Sayeed, A.M.: An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J. Sel. Topics Signal Process. 10(3), 436–453 (2016)

    Google Scholar 

  39. Hodge, J.A., Mishra, K.V., Sadler, B.M., Zaghloul, A.I.: Reconfigurable intelligent surfaces for 6G wireless networks using index-modulated metasurface transceivers. IEEE J. Sel. Topics Signal Process. (2023). In press

    Google Scholar 

  40. Hossain, Z., Jornet, J.M.: Hierarchical bandwidth modulation for ultra-broadband terahertz communications. In: IEEE Int. Conf. Commun., pp. 1–7 (2019)

    Google Scholar 

  41. Huq, K.M.S., Busari, S.A., Rodriguez, J., Frascolla, V., Bazzi, W., Sicker, D.C.: Terahertz-enabled wireless system for beyond-5G ultra-fast networks: A brief survey. IEEE Netw. 33(4), 89–95 (2019)

    Google Scholar 

  42. Jacyna, G.M., Fell, B., McLemore, D.: A high-level overview of fundamental limits studies for the DARPA SSPARC program. In: IEEE Radar Conf., pp. 1–6 (2016)

    Google Scholar 

  43. Ju, S., Rappaport, T.S.: 140 GHz urban microcell propagation measurements for spatial consistency modeling. In: IEEE Int. Conf. Commun., pp. 1–6 (2021)

    Google Scholar 

  44. Kaushik, A., Thompson, J., Vlachos, E., Tsinos, C., Chatzinotas, S.: Dynamic RF chain selection for energy efficient and low complexity hybrid beamforming in millimeter wave MIMO systems. IEEE Trans. Green Commun. Netw. 3(4), 886–900 (2019)

    Google Scholar 

  45. Kumari, P., Choi, J., Gonzalez-Prelcic, N., Heath Jr, R.W.: IEEE 802.11ad-based radar: An approach to joint vehicular communication-radar system. IEEE Trans. Veh. Tech. 67(4), 3012–3027 (2018)

    Google Scholar 

  46. Kürner, T., Priebe, S.: Towards THz communications-status in research, standardization and regulation. J. Infrared Millimeter Terahertz Waves 35(1), 53–62 (2014)

    Google Scholar 

  47. Labib, M., Reed, J.H., Martone, A.F., Zaghloul, A.I.: Coexistence between radar and LTE-U systems: Survey on the 5 GHz band. In: USNC-URSI Radio Sci. Meet., pp. 1–2 (2016)

    Google Scholar 

  48. Lien, J., Gillian, N., Karagozler, M.E., Amihood, P., Schwesig, C., Olson, E., Raja, H., Poupyrev, I.: Soli: Ubiquitous gesture sensing with millimeter wave radar. ACM Trans. Graph. 35(4), 142:4–142:19 (2016)

    Google Scholar 

  49. Lin, C., Li, G.Y.: Terahertz communications: An array-of-subarrays solution. IEEE Commun. Mag. 54(12), 124–131 (2016)

    Google Scholar 

  50. Lin, T., Cong, J., Zhu, Y., Zhang, J., Letaief, K.B.: Hybrid beamforming for millimeter wave systems using the MMSE criterion. IEEE Trans. Commun. 67(5), 3693–3708 (2019)

    Google Scholar 

  51. Liu, J., Mishra, K.V., Saquib, M.: Co-designing statistical MIMO radar and in-band full-duplex multi-user MIMO communications. arXiv preprint arXiv:2006.14774 (2020)

  52. Lu, Y., Hao, M., Mackenzie, R.: Reconfigurable intelligent surface based hybrid precoding for THz communications. Intell. Converged Netw. 3(1), 103–118 (2022)

    Google Scholar 

  53. Lv, W., Mishra, K.V., Chen, S.: Clutter suppression via space-time-range processing in co-pulsing FDA radar. In: Asilomar Conf. Signals Syst. Comput. pp. 470–475 (2022)

    Google Scholar 

  54. Lv, W., Mishra, K.V., Chen, S.: Co-pulsing FDA radar. IEEE Trans. Aerosp. Electron. Syst. 59(2), 1107–1126 (2023)

    Google Scholar 

  55. MacCartney Jr., G.R., Sun, S., Rappaport, T.S., Xing, Y., Yan, H., Koka, J., Wang, R., Yu, D.: Millimeter wave wireless communications: New results for rural connectivity. In: ACM Workshop All Things Cellular, pp. 31–36 (2016)

    Google Scholar 

  56. Marchetti, E., Du, R., Willetts, B., Norouzian, F., Hoare, E.G., Tran, T.Y., Clarke, N., Cherniakov, M., Gashinova, M.: Radar cross-section of pedestrians in the low-THz band. IET Radar, Sonar & Navigation 12(10), 1104–1113 (2018)

    Google Scholar 

  57. Méndez-Rial, R., Rusu, C., González-Prelcic, N., Alkhateeb, A., Heath, R.W.: Hybrid MIMO architectures for millimeter wave communications: Phase shifters or switches? IEEE Access 4, 247–267 (2016)

    Google Scholar 

  58. Mishra, K.V., Bhavani Shankar, M.R., Koivunen, V., Ottersten, B., Vorobyov, S.A.: Toward millimeter wave joint radar-communications: A signal processing perspective. IEEE Signal Process. Mag. 36(5), 100–114 (2019)

    Google Scholar 

  59. Mishra, K.V., Bilik, I., Tabrikian, J., Petropulu, A.P.: Signal processing for terahertz-band automotive radars: Exploring the next frontier. arXiv preprint (2023)

    Google Scholar 

  60. Mishra, K.V., Eldar, Y.C.: Sub-Nyquist channel estimation over IEEE 802.11ad link. In: IEEE Int. Conf. Samp. Th. Applicat., pp. 355–359 (2017)

    Google Scholar 

  61. Mishra, K.V., Eldar, Y.C.: Sub-Nyquist radar: Principles and prototypes. In: A.D. Maio, Y.C. Eldar, A. Haimovich (eds.) Compressed Sensing in Radar Signal Processing, pp. 1–49. Cambridge University Press (2019)

    Google Scholar 

  62. Ning, B., Chen, Z., Chen, W., Du, Y., Fang, J.: Terahertz multi-user massive MIMO with intelligent reflecting surface: Beam training and hybrid beamforming. IEEE Transactions on Vehicular Technology 70(2), 1376–1393 (2021)

    Google Scholar 

  63. Ok, G., Park, K., Kim, H.J., Chun, H.S., Choi, S.W.: High-speed terahertz imaging toward food quality inspection. Appl. Optics 53(7), 1406–1412 (2014)

    Google Scholar 

  64. Paul, B., Bliss, D.W.: Extending joint radar-communications bounds for FMCW radar with Doppler estimation. In: IEEE Radar Conf., pp. 0089–0094 (2015)

    Google Scholar 

  65. Piesiewicz, R., Jansen, C., Mittleman, D., Kleine-Ostmann, T., Koch, M., Kurner, T.: Scattering analysis for the modeling of THz communication systems. IEEE Trans. Antennas Propag. 55(11), 3002–3009 (2007)

    Google Scholar 

  66. Rajatheva, N., Atzeni, I., Bjornson, E., Bourdoux, A., Buzzi, S., Dore, J.B., Erkucuk, S., Fuentes, M., Guan, K., Hu, Y., et al.: White paper on broadband connectivity in 6G. arXiv preprint arXiv:2004.14247 (2020)

  67. Ramadan, Y.R., Minn, H., Dai, Y.: A new paradigm for spectrum sharing between cellular wireless communications and radio astronomy systems. IEEE Trans. Commun. 65(9), 3985–3999 (2017)

    Google Scholar 

  68. Rappaport, T.S., Heath Jr., R.W., Daniels, R.C., Murdock, J.N.: Millimeter wave wireless communications. Prentice Hall (2014)

    Google Scholar 

  69. Rappaport, T.S., MacCartney, G.R., Samimi, M.K., Sun, S.: Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Transactions on Communications 63(9), 3029–3056 (2015)

    Google Scholar 

  70. Rong, Y., Gutierrez, R., Mishra, K.V., Bliss, D.W.: Noncontact vital sign detection with UAV-borne radars: An overview of recent advances. IEEE Veh. Technol. Mag. 16(3), 118–128 (2021)

    Google Scholar 

  71. Sarieddeen, H., Alouini, M.S., Al-Naffouri, T.Y.: Terahertz-band ultra-massive spatial modulation MIMO. IEEE J. Sel. Areas Commun. 37(9), 2040–2052 (2019)

    Google Scholar 

  72. Sarieddeen, H., Alouini, M.S., Al-Naffouri, T.Y.: An overview of signal processing techniques for Terahertz communications. Proc. IEEE 109(10), 1628–1665 (2021)

    Google Scholar 

  73. Sedighi, S., Mishra, K.V., Shankar, M.B., Ottersten, B.: Localization with one-bit passive radars in narrowband internet-of-things using multivariate polynomial optimization. IEEE Trans. Signal Process. 69, 2525–2540 (2021)

    MathSciNet  MATH  Google Scholar 

  74. Skolnik, M.I.: Radar handbook, third edn. McGraw-Hill (2008)

    Google Scholar 

  75. Song, H.J., Nagatsuma, T.: Present and future of terahertz communications. IEEE Trans. Terahertz Sci. Technol. 1(1), 256–263 (2011)

    Google Scholar 

  76. Song, N., Yang, T., Sun, H.: Overlapped subarray based hybrid beamforming for millimeter wave multiuser massive MIMO. IEEE Signal Process. Lett. 24(5), 550–554 (2017)

    Google Scholar 

  77. Sun, J., Hu, F., Lucyszyn, S.: Predicting atmospheric attenuation under pristine conditions between 0.1 and 100 THz. IEEE Access 4, 9377–9399 (2016)

    Google Scholar 

  78. Tan, J., Dai, L.: Wideband beam tracking in THz massive MIMO systems. IEEE J. Sel. Areas Commun. 39(6), 1693–1710 (2021)

    Google Scholar 

  79. Tarboush, S., Sarieddeen, H., Chen, H., Loukil, M.H., Jemaa, H., Alouini, M.S., Al-Naffouri, T.Y.: TeraMIMO: A channel simulator for wideband ultra-massive MIMO terahertz communications. IEEE Trans. Veh. Techno. 70(12), 12325–12341 (2021)

    Google Scholar 

  80. Tekbıyık, K., Ekti, A.R., Kurt, G.K., Görçin, A.: Terahertz band communication systems: Challenges, novelties and standardization efforts. Phys. Commun. 35, 100700 (2019)

    Google Scholar 

  81. Vargas, E., Mishra, K.V., Jacome, R., Sadler, B.M., Arguello, H.: Dual-blind deconvolution for overlaid radar-communications systems. IEEE J. Sel. Areas Inf. Th. (2023). In press. arXiv preprint arXiv:2208.04381 (2022)

  82. Vouras, P., Mishra, K.V., Artusio-Glimpse, A.: Phase retrieval for Rydberg quantum arrays. In: IEEE Int. Conf. Acoust. Speech Signal Process. pp. 1–5 (2023)

    Google Scholar 

  83. Vouras, P., Mishra, K.V., Artusio-Glimpse, A., Pinilla, S., Xenaki, A., Griffith, D.W., Egiazarian, K.: An overview of advances in signal processing techniques for classical and quantum wideband synthetic apertures. IEEE J. Sel. Topics Signal Process. 17(2), 317–369 (2023)

    Google Scholar 

  84. Wang, B., Gao, F., Jin, S., Lin, H., Li, G.Y., Sun, S., Rappaport, T.S.: Spatial-wideband effect in massive MIMO with application in mmWave systems. IEEE Commun. Mag. 56(12), 134–141 (2018)

    Google Scholar 

  85. Wang, G., Mishra, K.V.: Displaced sensor automotive radar imaging. arXiv preprint arXiv:2010.04085 (2020)

  86. Wei, T., Wu, L., Mishra, K.V., Shankar, M.: Multi-IRS-aided doppler-tolerant wideband DFRC system. arXiv preprint arXiv:2207.02157 (2022)

  87. Wu, L., Mishra, K.V., Shankar, M.B., Ottersten, B.: Resource allocation in heterogeneously-distributed joint radar-communications under asynchronous Bayesian tracking framework. IEEE J. Sel. Areas Commun. 40(7), 2026–2042 (2022)

    Google Scholar 

  88. Wu, Y., Han, C., Chen, Z.: An energy-efficient DFT-spread orthogonal time frequency space system for terahertz integrated sensing and communication. In: IEEE Int. Conf. Commun. Workshops, pp. 1–5 (2022)

    Google Scholar 

  89. Xing, Y., Rappaport, T.S.: Propagation measurement system and approach at 140 GHz - Moving to 6G and above 100 GHz. In: IEEE Global Commun. Conf,, pp. 1–6 (2018)

    Google Scholar 

  90. Xu, Z., Liu, T.: Vital sign sensing method based on EMD in terahertz band. EURASIP J. Advances Signal Process. 2014(1), 1–8 (2014)

    Google Scholar 

  91. Yu, X., Shen, J., Zhang, J., Letaief, K.B.: Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE J. Sel. Topics Signal Process. 10(3), 485–500 (2016)

    Google Scholar 

  92. Yuan, H., Yang, N., Yang, K., Han, C., An, J.: Hybrid beamforming for terahertz multi-carrier systems over frequency selective fading. IEEE Trans. Commun. 68(10), 6186–6199 (2020)

    Google Scholar 

  93. Yuan, H., Yang, N., Yang, K., Han, C., An, J.: Hybrid beamforming for terahertz multi-carrier systems over frequency selective fading. IEEE Trans. Commun. 68(10), 6186–6199 (2020)

    Google Scholar 

  94. Zhang, J.A., Liu, F., Masouros, C., Heath, R.W., Feng, Z., Zheng, L., Petropulu, A.: An overview of signal processing techniques for joint communication and radar sensing. IEEE J. Sel. Top. Signal Process. 15(6), 1295–1315 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar Vijay Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, K.V., Shankar, M.R.B., Ottersten, B. (2023). Millimeter-Wave and THz-Band Joint Radar-Communications. In: Liu, F., Masouros, C., Eldar, Y.C. (eds) Integrated Sensing and Communications. Springer, Singapore. https://doi.org/10.1007/978-981-99-2501-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2501-8_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2500-1

  • Online ISBN: 978-981-99-2501-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics