Skip to main content

Detecting Escalation Level from Speech with Transfer Learning and Acoustic-Linguistic Information Fusion

  • Conference paper
  • First Online:
Man-Machine Speech Communication (NCMMSC 2022)

Abstract

Textual escalation detection has been widely applied to e-commerce companies’ customer service systems to pre-alert and prevent potential conflicts. Similarly, acoustic-based escalation detection systems are also helpful in enhancing passengers’ safety and maintaining public order in public areas such as airports and train stations, where many impersonal conversations frequently occur. To this end, we introduce a multimodal system based on acoustic-linguistic features to detect escalation levels from human speech. Voice Activity Detection (VAD) and Label Smoothing are adopted to enhance the performance of this task further. Given the difficulty and high cost of data collection in open scenarios, the datasets we used in this task are subject to severe low resource constraints. To address this problem, we introduce transfer learning using a multi-corpus framework involving emotion detection datasets such as RAVDESS and CREMA-D to integrate emotion features into escalation signals representation learning. On the development set, our proposed system achieves 81.5% unweighted average recall (UAR), which significantly outperforms the baseline of 72.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Webrtc-vad (2017). https://webrtc.org/

  2. Abdelwahab, M., Busso, C.: Supervised domain adaptation for emotion recognition from speech. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5058–5062. IEEE (2015)

    Google Scholar 

  3. Aurelio, Y.S., de Almeida, G.M., de Castro, C.L., Braga, A.P.: Learning from imbalanced data sets with weighted cross-entropy function. Neural Process. Lett. 50(2), 1937–1949 (2019)

    Article  Google Scholar 

  4. Brain, D., Webb, G.I.: On the effect of data set size on bias and variance in classification learning. In: Proceedings of the Fourth Australian Knowledge Acquisition Workshop, University of New South Wales, pp. 117–128 (1999)

    Google Scholar 

  5. Busso, C., et al.: Iemocap: interactive emotional dyadic motion capture database. Lang. Resour. Eval. 42(4), 335–359 (2008)

    Article  Google Scholar 

  6. Busso, C., et al.: Analysis of emotion recognition using facial expressions, speech and multimodal information. In: Proceedings of the 6th International Conference on Multimodal Interfaces, pp. 205–211 (2004)

    Google Scholar 

  7. Cao, H., Cooper, D.G., Keutmann, M.K., Gur, R.C., Nenkova, A., Verma, R.: Crema-d: Crowd-sourced emotional multimodal actors dataset. IEEE Trans. Affect. Comput. 5(4), 377–390 (2014)

    Article  Google Scholar 

  8. Caraty, M.-J., Montacié, C.: Detecting speech interruptions for automatic conflict detection. In: D’Errico, F., Poggi, I., Vinciarelli, A., Vincze, L. (eds.) Conflict and Multimodal Communication. CSS, pp. 377–401. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14081-0_18

    Chapter  Google Scholar 

  9. Dupuis, K., Pichora-Fuller, M.K.: Toronto emotional speech set (tess)-younger talker_happy (2010)

    Google Scholar 

  10. Evci, U., Dumoulin, V., Larochelle, H., Mozer, M.C.: Head2toe: Utilizing intermediate representations for better transfer learning. In: International Conference on Machine Learning, pp. 6009–6033. PMLR (2022)

    Google Scholar 

  11. Fayek, H.M., Lech, M., Cavedon, L.: Towards real-time speech emotion recognition using deep neural networks. In: 2015 9th International Conference on Signal Processing and Communication Systems (ICSPCS), pp. 1–5. IEEE (2015)

    Google Scholar 

  12. Gideon, J., Khorram, S., Aldeneh, Z., Dimitriadis, D., Provost, E.M.: Progressive Neural Networks for Transfer Learning in Emotion Recognition. In: Proceedings Interspeech 2017, pp. 1098–1102 (2017). https://doi.org/10.21437/Interspeech. 2017–1637

  13. Grèzes, F., Richards, J., Rosenberg, A.: Let me finish: automatic conflict detection using speaker overlap. In: Proceedings Interspeech 2013, pp. 200–204 (2013). https://doi.org/10.21437/Interspeech. 2013–67

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Huang, C., Song, B., Zhao, L.: Emotional speech feature normalization and recognition based on speaker-sensitive feature clustering. Int. J. Speech Technol. 19(4), 805–816 (2016). https://doi.org/10.1007/s10772-016-9371-3

    Article  Google Scholar 

  16. Kim, S., Valente, F., Vinciarelli, A.: Annotation and detection of conflict escalation in Political debates. In: Proceedings Interspeech 2013, pp. 1409–1413 (2013). https://doi.org/10.21437/Interspeech. 2013–369

  17. Kim, S., Yella, S.H., Valente, F.: Automatic detection of conflict escalation in spoken conversations, pp. 1167–1170 (2012). https://doi.org/10.21437/Interspeech. 2012–121

  18. Kishore, K.K., Satish, P.K.: Emotion recognition in speech using mfcc and wavelet features. In: 2013 3rd IEEE International Advance Computing Conference (IACC), pp. 842–847. IEEE (2013)

    Google Scholar 

  19. Ko, J.H., Fromm, J., Philipose, M., Tashev, I., Zarar, S.: Limiting numerical precision of neural networks to achieve real-time voice activity detection. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2236–2240. IEEE (2018)

    Google Scholar 

  20. Lalitha, S., Geyasruti, D., Narayanan, R., M, S.: Emotion detection using mfcc and cepstrum features. Procedia Computer Science 70, 29–35 (2015). https://doi.org/10.1016/j.procs.2015.10.020, https://www.sciencedirect.com/science/article/pii/S1877050915031841, proceedings of the 4th International Conference on Eco-friendly Computing and Communication Systems

  21. Lefter, I., Burghouts, G.J., Rothkrantz, L.J.: An audio-visual dataset of human-human interactions in stressful situations. J. Multimodal User Interfaces 8(1), 29–41 (2014)

    Article  Google Scholar 

  22. Lefter, I., Rothkrantz, L.J., Burghouts, G.J.: A comparative study on automatic audio-visual fusion for aggression detection using meta-information. Pattern Recogn. Lett. 34(15), 1953–1963 (2013)

    Article  Google Scholar 

  23. Letcher, A., Trišović, J., Cademartori, C., Chen, X., Xu, J.: Automatic conflict detection in police body-worn audio. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2636–2640. IEEE (2018)

    Google Scholar 

  24. Likitha, M.S., Gupta, S.R.R., Hasitha, K., Raju, A.U.: Speech based human emotion recognition using mfcc. In: 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 2257–2260 (2017). https://doi.org/10.1109/WiSPNET.2017.8300161

  25. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)

  26. Livingstone, S.R., Russo, F.A.: The ryerson audio-visual database of emotional speech and song (ravdess): a dynamic, multimodal set of facial and vocal expressions in north american english. PLoS ONE 13(5), e0196391 (2018)

    Article  Google Scholar 

  27. McFee, B., et al.: librosa: Audio and music signal analysis in python. In: Proceedings of the 14th Python in Science Conference. vol. 8, pp. 18–25. Citeseer (2015)

    Google Scholar 

  28. Mehta, P., et al.: A high-bias, low-variance introduction to machine learning for physicists. Phys. Rep. 810, 1–124 (2019)

    Article  MathSciNet  Google Scholar 

  29. Müller, R., Kornblith, S., Hinton, G.E.: When does label smoothing help? In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems. vol. 32. Curran Associates, Inc. (2019). https://proceedings.neurips.cc/paper/2019/file/f1748d6b0fd9d439f71450117eba2725-Paper.pdf

  30. Ng, H.W., Nguyen, V.D., Vonikakis, V., Winkler, S.: Deep learning for emotion recognition on small datasets using transfer learning. In: Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, pp. 443–449 (2015)

    Google Scholar 

  31. Peng, M., Wu, Z., Zhang, Z., Chen, T.: From macro to micro expression recognition: Deep learning on small datasets using transfer learning. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 657–661. IEEE (2018)

    Google Scholar 

  32. Polzehl, T., Sundaram, S., Ketabdar, H., Wagner, M., Metze, F.: Emotion classification in children’s speech using fusion of acoustic and linguistic features. In: Proceedings Interspeech 2009, pp. 340–343 (2009). https://doi.org/10.21437/Interspeech. 2009–110

  33. Poria, S., Hazarika, D., Majumder, N., Naik, G., Cambria, E., Mihalcea, R.: Meld: A multimodal multi-party dataset for emotion recognition in conversations. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 527–536 (2019)

    Google Scholar 

  34. Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982–3992 (2019)

    Google Scholar 

  35. Reimers, N., Gurevych, I.: Making monolingual sentence embeddings multilingual using knowledge distillation. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 4512–4525 (2020)

    Google Scholar 

  36. Schuller, B.W., et al.: The INTERSPEECH 2021 Computational Paralinguistics Challenge: COVID-19 Cough, COVID-19 Speech, Escalation & Primates. In: Proceedings INTERSPEECH 2021, 22nd Annual Conference of the International Speech Communication Association. ISCA, Brno, Czechia (September 2021), to appear

    Google Scholar 

  37. Tang, Y.: Deep learning using linear support vector machines (2013). https://doi.org/10.48550/ARXIV.1306.0239, https://arxiv.org/abs/1306.0239

  38. Tzirakis, P., Trigeorgis, G., Nicolaou, M.A., Schuller, B.W., Zafeiriou, S.: End-to-end multimodal emotion recognition using deep neural networks. IEEE J. Selected Topics Signal Process. 11(8), 1301–1309 (2017). https://doi.org/10.1109/JSTSP.2017.2764438

    Article  Google Scholar 

  39. van den Oord, A., Dieleman, S., Schrauwen, B.: Transfer learning by supervised pre-training for audio-based music classification. In: Conference of the International Society for Music Information Retrieval, Proceedings, p. 6 (2014)

    Google Scholar 

  40. Wu, C., Huang, C., Chen, H.: Text-independent speech emotion recognition using frequency adaptive features. Multimedia Tools Appl. 77(18), 24353–24363 (2018). https://doi.org/10.1007/s11042-018-5742-x

    Article  Google Scholar 

  41. Yang, Y., et al.: Multilingual universal sentence encoder for semantic retrieval. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 87–94 (2020)

    Google Scholar 

  42. Zhao, W.: Research on the deep learning of the small sample data based on transfer learning. In: AIP Conference Proceedings, vol. 1864, p. 020018. AIP Publishing LLC (2017)

    Google Scholar 

Download references

Acknowledgements

This research is funded in part by the Synear and Wang-Cai donation lab at Duke Kunshan University. Many thanks for the computational resource provided by the Advanced Computing East China Sub-Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, Z., Xu, Y., Li, M. (2023). Detecting Escalation Level from Speech with Transfer Learning and Acoustic-Linguistic Information Fusion. In: Zhenhua, L., Jianqing, G., Kai, Y., Jia, J. (eds) Man-Machine Speech Communication. NCMMSC 2022. Communications in Computer and Information Science, vol 1765. Springer, Singapore. https://doi.org/10.1007/978-981-99-2401-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2401-1_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2400-4

  • Online ISBN: 978-981-99-2401-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics