Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 185 Accesses

Abstract

Coating is a traditional anti-corrosion method. It “physically” blocks the interaction between CO2 and the protecting target, like steel. Coatings can be applied on the internal and external surfaces of steel pipelines to protect them from corrosion induced by CO2, other gases, and liquids. Temperature and humidity are the key factors to determine the appropriate type of coatings applied. One of the most popular anticorrosion techniques is the application of coatings on metals, which act as a barrier between the metal and its surroundings to prevent attack from corrosive agents. Overall, the coating should be highly adhesive, resistant to corrosion and moisture, compatible to the environment, and have enough structure strength to prevent disbandment. For applications where physical damage to the coating may occur, the coatings must be uniform, well adherent, pore free, and self-healing in order to provide effective corrosion protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cui, G., Bi, Z., Wang, S., Liu, J., Xing, X., Li, Z., Wang, B.: A comprehensive review on smart anti-corrosive coatings. Prog. Org. Coat. 148, 105821 (2020)

    Article  CAS  Google Scholar 

  2. Qian, Y., Li, Y., Jungwirth, S., Seely, N., Fang, Y., Shi, X.: The application of anti-corrosion coating for preserving the value of equipment asset in chloride-laden environments: a review. Int. J. Electrochem. Sci 10, 10756–10780 (2015)

    Google Scholar 

  3. Verma, C., Olasunkanmi, L.O., Akpan, E.D., Quraishi, M.A., Dagdag, O., El Gouri, M., Sherif, E.-S.M., Ebenso, E.E.: Epoxy resins as anticorrosive polymeric materials: a review. React. Funct. Polym. 156, 104741 (2020)

    Article  CAS  Google Scholar 

  4. Bhadouria, A.S., Kumar, A., Raj, D., Verma, A., Singh, S., Tripathi, P., Kumar, Y., Sinha, A.S.K., Tripathi, N.M., Yeneneh, A.M., Dwivedi, D.: Corrosion mitigation in oil reservoirs during CO2 injection using nanomaterials, in Nanotechnology for CO2 utilization in oilfield applications, pp. 127–146, Chap. 8. Gulf Professional Publishing, Amsterdam (2022)

    Google Scholar 

  5. Samimi, A., Zarinabadi, S.: An analysis of polyethylene coating corrosion in oil and gas pipelines. In: First International Conference of Oil, Gas, Petrochemical and Power Plant, USA (2011)

    Google Scholar 

  6. Wasim, M., Djukic, M.B.: External corrosion of oil and gas pipelines: a review of failure mechanisms and predictive preventions. J. Nat. Gas Sci. Eng. 100, 104467 (2022)

    Article  CAS  Google Scholar 

  7. Marathe, R., Tatiya, P., Chaudhari, A., Lee, J., Mahulikar, P., Sohn, D., Gite, V.: Neem acetylated polyester polyol—renewable source based smart PU coatings containing quinoline (corrosion inhibitor) encapsulated polyurea microcapsules for enhance anticorrosive property. Ind. Crops Prod. 77, 239–250 (2015)

    Article  CAS  Google Scholar 

  8. Cui, G., Bi, Z., Liu, J., Wang, S., Li, Z.: New method for CO2 corrosion resistance Ni-W-Y2O3-ZrO2 nanocomposite coatings. Ceram. Int. 45(5), 6163–6174 (2019)

    Article  CAS  Google Scholar 

  9. Kim, S.K., Yoo, H.J.: Formation of bilayer Ni–SiC composite coatings by electrodeposition. Surf. Coat. Technol. 108–109, 564–569 (1998)

    Article  Google Scholar 

  10. Tang, H., Zhang, D., Li, Y.: Research on self-lubricating coating with electroless composite (Ni-Co-P)-MoS~2 coating. Electroplat. Pollut. Control 26(4), 23 (2006)

    CAS  Google Scholar 

  11. Ganesan, M., Liu, C.-C., Pandiyarajan, S., Lee, C.-T., Chuang, H.-C.: Post-supercritical CO2 electrodeposition approach for Ni-Cu alloy fabrication: an innovative eco-friendly strategy for high-performance corrosion resistance with durability. Appl. Surf. Sci. 577, 151955 (2022)

    Article  CAS  Google Scholar 

  12. Cui, G., Bi, Z., Zhang, R., Liu, J., Yu, X., Li, Z.: A comprehensive review on graphene-based anti-corrosive coatings. Chem. Eng. J. 373, 104–121 (2019)

    Article  CAS  Google Scholar 

  13. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D.-E., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    Article  CAS  PubMed  Google Scholar 

  15. Kim, J.T., Choi, H., Shin, E., Park, S., Kim, I.G.: Graphene-based optical waveguide tactile sensor for dynamic response. Sci. Rep. 8(1), 1–6 (2018)

    Google Scholar 

  16. Akbar, K., Kim, J.H., Lee, Z., Kim, M., Yi, Y., Chun, S.-H.: Superaerophobic graphene nano-hills for direct hydrazine fuel cells. NPG Asia Mater. 9(5), e378 (2017)

    Article  CAS  Google Scholar 

  17. Goldsmith, B.R., Locascio, L., Gao, Y., Lerner, M., Walker, A., Lerner, J., Kyaw, J., Shue, A., Afsahi, S., Pan, D.: Digital biosensing by foundry-fabricated graphene sensors. Sci. Rep. 9(1), 1–10 (2019)

    Article  CAS  Google Scholar 

  18. Chen, X.M., Song, S.H., Weng, L.Q., Liu, S.J.: Solute grain boundary segregation during high temperature plastic deformation in a Cr–Mo low alloy steel. Mater. Sci. Eng. A 528, 7663–7668 (2011)

    Google Scholar 

  19. Ye, X., Lin, Z., Zhang, H., Zhu, H., Liu, Z., Zhong, M.: Protecting carbon steel from corrosion by laser in situ grown graphene films. Carbon 94, 326–334 (2015)

    Article  CAS  Google Scholar 

  20. Zhu, M., Du, Z., Yin, Z., Zhou, W., Liu, Z., Tsang, S.H., Teo, E.H.T.: Low-temperature in situ growth of graphene on metallic substrates and its application in anticorrosion. ACS Appl. Mater. Interfaces 8(1), 502–510 (2016)

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, L., Duan, Y., Gao, Z., Ma, J., Liu, R., Liu, S., Tu, Z., Liu, Y., Bai, C., Cui, L.: Graphene enhanced anti-corrosion and biocompatibility of NiTi alloy. NanoImpact 7, 7–14 (2017)

    Article  Google Scholar 

  22. Poornima Vijayan, P., Al-Maadeed, M.: Self-repairing composites for corrosion protection: a review on recent strategies and evaluation methods. Materials, 12(17), 2754 (2019)

    Google Scholar 

  23. Wang, X., Guo, Y., Su, J., Zhang, X., Wang, Y., Tan, Y.: Fabrication and characterization of novel electrothermal self-healing microcapsules with graphene/polymer hybrid shells for bitumenious material. Nanomaterials 8(6), 419 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lakshmi, R.V., Yoganandan, G., Kavya, K.T., Basu, B.J.: Effective corrosion inhibition performance of Ce3+ doped sol–gel nanocomposite coating on aluminum alloy. Prog. Org. Coat. 76(2), 367–374 (2013)

    Article  CAS  Google Scholar 

  25. Garcia, S.J.: Effect of polymer architecture on the intrinsic self-healing character of polymers. Eur. Polym. J. 53, 118–125 (2014)

    Article  CAS  Google Scholar 

  26. Townsend, P.: Ion implantation—an introduction. Contemp. Phys. 27(3), 241–256 (1986)

    Article  CAS  Google Scholar 

  27. Liao, S.: Application of Ion Implantation in Corrosion and Protection of Lead, Nickel and Aluminium. Chongqing University, Chongqing (2002)

    Google Scholar 

  28. Hartley, N., Swindlehurst, W., Dearnaley, G., Turner, J.: Friction changes in ion-implanted steel. J. Mater. Sci. 8, 900–904 (1973)

    Article  CAS  Google Scholar 

  29. McCafferty, E.: Effect of ion implantation on the corrosion behavior of iron, stainless steels, and aluminum—a review. Corrosion 57(12), 1011–1029 (2001)

    Article  CAS  Google Scholar 

  30. Chen, C., Wang, M., Liu, Y.: New surface modification technology for Mg alloys. Corros. Sci. Prot. Technol. 16(4), 215–217 (2004)

    CAS  Google Scholar 

  31. Rautray, T.R., Narayanan, R., Kwon, T.Y., Kim, K.H.: Surface modification of titanium and titanium alloys by ion implantation. J. Biomed. Mater. Res., Part B 93(2), 581–591 (2010)

    Article  Google Scholar 

  32. Lu, T., Qiao, Y., Liu, X.: Surface modification of biomaterials using plasma immersion ion implantation and deposition. Interface focus 2(3), 325–336 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  33. Malik, A.U., Andijani, I., Ahmed, S., Al-Muaili, F.: Corrosion and mechanical behavior of fusion bonded epoxy (FBE) in aqueous media. Desalination, 150(3), 247–254 (2002)

    Google Scholar 

  34. Chen, S., Wang, X., Zhu, G., Lu, Z., Zhang, Y., Zhao, X., Hou, B.: Developing multi-wall carbon nanotubes/fusion-bonded epoxy powder nanocomposite coatings with superior anti-corrosion and mechanical properties. Colloids Surf. A 628, 127309 (2021)

    Google Scholar 

  35. Alagu Sundara, P., Srinivasan, R. G., Palani, S., Selvam, M.: Surface modification on AZ31B Mg alloy for improved corrosion resistance and hardness by thermal spray aluminium coating. Materials Today: Proceedings 2586–2592 (2023)

    Google Scholar 

  36. Tang, R., Joshi, G.R., Zhao, H., Venkateswaran, S.P., Withers, P.J., Xiao, P.: The influence of electrodeposited Ni-Co alloy coating microstructure on CO2 corrosion resistance on X65 steel. Corros. Sci. 167, 108485 (2020)

    Article  CAS  Google Scholar 

  37. Sui, Y., Sun, C., Sun, J., Pu, B., Ren, W., Zhao, W.: Stability of an electrodeposited nanocrystalline Ni-based alloy coating in oil and gas wells with the coexistence of H2S and CO2. Materials 10(6), 632 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deng, C., Zhang, L. (2023). Corrosion Control (II): Anti-corrosion Coating. In: Zhang, L. (eds) Corrosion in CO2 Capture, Transportation, Geological Utilization and Storage. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-2392-2_6

Download citation

Publish with us

Policies and ethics