Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 193 Accesses

Abstract

In post-combustion CO2 capture, amine-based absorbents are the most-widely used CO2 capture agent. Corrosion is considered to be one of the most severe operational problems in amine-based CO2 absorption processes and experience shows that amine degradation products often aggravate corrosion. In general, amines are not intrinsically corrosive, but amines may become corrosive when they absorb CO2. Furthermore, since the treatment units operate in semi-closed circuit, the solvent may become enriched with possibly corrosive degradation products. CO2 transportation is an important stage in whole-chain CCUS projects. Impurity is an important factor in CO2-induced transport pipeline corrosion. H2O, NOx, O2, H2, CH4, H2S, etc. are typical impurities that may accelerate CO2 corrosion in pipeline CO2 transportation. The properties of CO2 containing impurities determine the parameters of phase equilibrium, density, compressibility, viscosity, etc., which influence a series of system parameters like the pressure curve/loss conditions, heat transfer, flow volume, etc. in the pipeline transportation process. The changes of those system parameters in turn affect the potential for CO2-induced pipeline corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.S. Department of Energy: Carbon Capture, Utilization & Storage. https://www.energy.gov/carbon-capture-utilization-storage

  2. Rackley, S.A.: Carbon Capture and Storage. Butterworth-Heinemann, Oxford (2017)

    Book  Google Scholar 

  3. Xiang, Y., Xie, W., Ni, S., He, X.: Comparative study of A106 steel corrosion in fresh and dirty MEA solutions during the CO2 capture process: Effect of NO3. Corros. Sci. 167, 108521 (2020)

    Article  CAS  Google Scholar 

  4. Kittel, J., Gonzalez, S.: Corrosion in CO2 post-combustion capture with alkanolamines–a review. Oil Gas Sci. Technol. 69(5), 915–929 (2014)

    Article  Google Scholar 

  5. Kohl, A.L., Nielsen, R.: Gas purification. Gulf Publishing Company, Houston (1997)

    Google Scholar 

  6. Fytianos, G., Ucar, S., Grimstvedt, A., Svendsen, H.F., Knuutila, H.: Corrosion evaluation of MEA solutions by SEM-EDS. ICP-MS and XRD, Energy Procedia 86, 197–204 (2016)

    Article  CAS  Google Scholar 

  7. Budzianowski, W.M.: Single solvents, solvent blends, and advanced solvent systems in CO2 capture by absorption: a review. Int. J. Glob. Warm. 7(2), 184–225 (2015)

    Article  Google Scholar 

  8. Gouedard, C., Picq, D., Launay, F., Carrette, P. L.: Amine degradation in CO2 capture. I. A review, Int. J. Greenh. Gas. Con. 10, 244–270 (2012)

    Google Scholar 

  9. Bonis, M., Ballaguet, J., Rigaill, C.: A critical look at amines: a practical review of corrosion experience over four decades. In: 83rd Annual Convention of the Gas Processors Association 2004, San Antonio, U.S., vol. II, 644–659. GPA Midstream Association (2004)

    Google Scholar 

  10. Tanthapanichakoon, W., Veawab, A.: Heat stable salts and corrosivity in amine treating units. In: Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Kyoto, Japan, vol. II, 1591–1594. Elsevier (2003)

    Google Scholar 

  11. DuPart, M., Bacon, T., Edwards, D.: Understanding corrosion in alkanolamine gas treating plants: part 1. Hydrocarb. Process. 72(5), 6295319 (1993)

    Google Scholar 

  12. Veldman, R.: Alkanolamine solution corrosion mechanisms and inhibition from heat stable salts and CO2. In: Corrosion 2000: National Association of Corrosion Engineers International Annual Conference and Corrosion Show, Orlando, U.S., NACE-00496. OnePetro (2000)

    Google Scholar 

  13. Nielsen, R., Lewis, K., McCullough, J., Hansen, D.: Corrosion in refinery amine systems. In: Corrosion 95: National Association of Corrosion Engineers International Annual Conference and Corrosion Show, Orlando, U.S., 128737. OnePetro (1995)

    Google Scholar 

  14. Al-Luqman, S., Al-Zahrani, A.M.: Methodology of mitigating corrosion mechanisms in amine gas treating units. In: Corrosion 2006: National Association of Corrosion Engineers International Annual Conference and Corrosion Show, San Diego, U.S., NACE-06441. OnePetro (2006)

    Google Scholar 

  15. Teevens, P.J.: Toward a better understanding of of the cracking behavior of carbon steel in alkanolamine sour gas sweetening units: its detection, monitoring and how to avoid it. In: Corrosion 90: National Association of Corrosion Engineers International Annual Conference and Corrosion Show, Houston, U.S., 198. OnePetro (1990)

    Google Scholar 

  16. Muhammad, H.R., Faical, L.: CO2 capture in alkanolamine-RTIL blends via carbamate crystallization: route to efficient regeneration. Environ. Sci. Technol. 46(20), 11443–11450 (2012)

    Article  Google Scholar 

  17. Muhammad, H.R., Hana, B., Pascal, F., Mohamed, S., Faical, L.: Corrosion behavior of carbon steel in alkanolamine/room-temperature ionic liquid based CO2 capture systems. Ind. Eng. Chem. Res. 51(26), 8711–8718 (2012)

    Article  Google Scholar 

  18. Xiang, Y., Yan, M.C., Choi, Y.S., Young, D., Nesic, S.: Time-dependent electrochemical behavior of carbon steel in MEA-based CO2 capture process. Int. J. Greenh. Gas. Con. 30, 125–132 (2014)

    Article  CAS  Google Scholar 

  19. Campbell, K.L.S., Zhao, Y.C., Hall, J.J., Williams, D.R.: The effect of CO2-loaded amine solvents on the corrosion of a carbon steel stripper. Int. J. Greenh. Gas. Con. 47, 376–385 (2016)

    Article  CAS  Google Scholar 

  20. Rooney, P.C., DuPart, M.: Corrosion in alkanolamine plants: causes and minimization. In: Corrosion 2000: National Association of Corrosion Engineers International Annual Conference and Corrosion Show, Orlando, U.S., NACE-00494. OnePetro (2000)

    Google Scholar 

  21. Kittel, J., Bonis, M., Perdu, G.: Corrosion control on amine plants: new compact unit design for high acid gas loadings. In: Sour Oil & Gas Advanced Technology Conference, vol. 27 (2008)

    Google Scholar 

  22. Bui, M., Adjiman, C.S., Bardow, A., Anthony, E.J., Boston, A., Brown, S., Fennell, P.S., Fuss, S., Galindo, A., Hackett, L.A.: Carbon capture and storage (CCS): the way forward. Energ. Environ. Sci. 11(5), 1062–1176 (2018)

    Article  CAS  Google Scholar 

  23. Onyebuchi, V.E., Kolios, A., Hanak, D.P., Biliyok, C., Manovic, V.J.R., Reviews, S.E.: A systematic review of key challenges of CO2 transport via pipelines. Renew. Sust. Energ. Rev. 81, 2563–2583 (2018)

    Article  CAS  Google Scholar 

  24. Oosterkamp, A., Ramsen, J.: State-of-the-art overview of CO2 pipeline transport with relevance to offshore pipelines. Haugesund: Research Council of Norway, Gassco and Shell Technology Norway (2008)

    Google Scholar 

  25. Chapoy, A., Nazeri, M., Kapateh, M., Burgass, R., Coquelet, C., Tohidi, B.: Effect of impurities on thermophysical properties and phase behaviour of a CO2-rich system in CCS. Int. J. Greenh. Gas. Con. 19, 92–100 (2013)

    Article  CAS  Google Scholar 

  26. Munkejord, S., Hammer, M., Løvseth, S.: Intergovernmental panel on climate change, carbon capture & storage. Appl. Energy 169, 499–523 (2016)

    Article  CAS  Google Scholar 

  27. Porter, R.T.J., Fairweather, M., Pourkashanian, M., Woolley, R.M.: The range and level of impurities in CO2 streams from different carbon capture sources. Int. J. Greenh. Gas. Con. 36, 161–174 (2015)

    Article  CAS  Google Scholar 

  28. Liljemark, S., Arvidsson, K., McCann, M.T., Tummescheit, H., Velut, S.: Dynamic simulation of a carbon dioxide transfer pipeline for analysis of normal operation and failure modes. Energy Procedia 4, 3040–3047 (2011)

    Article  Google Scholar 

  29. Zhang, Y., Gao, K., Schmitt, G.: Water effect on steel under supercritical CO2 condition. In: Corrosion 2011: National Association of Corrosion Engineers International Annual Conference and Corrosion Show, Houston, U.S., NACE-11378. OnePetro (2011)

    Google Scholar 

  30. Zhang, Y., Gao, K., Schmitt, G.: Inhibiting steel corrosion in aqueous supercritical CO2 conditions. Mater. Performance 50(9), 54–59 (2011)

    Google Scholar 

  31. Schremp, F.W., Roberson, G.R.: Effect of supercritical carbon dioxide (CO2) on construction materials. SPE J. 15(03), 227–233 (1975)

    CAS  Google Scholar 

  32. Zhang, Z., Wang, G., Massarotto, P., Rudolph, V.: Optimization of pipeline transport for CO2 sequestration. Energ. Convers. Manage. 47(6), 702–715 (2006)

    Article  CAS  Google Scholar 

  33. Jiang, X., Qu, D.R., Song, X.L., Liu, X.H., Zhang, Y.L.: Critical water content for corrosion of X65 mild steel in gaseous, liquid and supercritical CO2 stream. Int. J. Greenh. Gas. Con. 85, 11–22 (2019)

    Article  CAS  Google Scholar 

  34. Xiang, Y., Wang, Z., Yang, X.X., Li, Z., Ni, W.D.: The upper limit of moisture content for supercritical CO2 pipeline transport. J. Supercrit. Fluids. 67, 14–21 (2012)

    Article  CAS  Google Scholar 

  35. Xu, M., Zhang, Q., Yang, X., Wang, Z., Liu, J., Li, Z.: Impact of surface roughness and humidity on X70 steel corrosion in supercritical CO2 mixture with SO2, H2O, and O2. J. Supercrit. Fluids. 107, 286–297 (2016)

    Article  CAS  Google Scholar 

  36. Witkowski, A., Rusin, A., Majkut, M., Rulik, S., Stolecka, K.: Comprehensive analysis of pipeline transportation systems for CO2 sequestration. Thermodynamics and Safety Problems 76, 665–673 (2013)

    CAS  Google Scholar 

  37. Mahgrefteh, H., Brown, S., Zhang, P.: A dynamic boundary ductile-fracture-propagation model for CO2 pipelines. Journal of Pipeline Engineering 9(4) (2010)

    Google Scholar 

  38. Spinelli, C.M., Demofonti, G., Di, B.M., Lucci, A.: CO2 full scale facilities challenges for EOR/CCTS testing on transportation issues. In: The Twenty-Second International Offshore and Polar Engineering Conference, Rhodes, Greece, ISOPE-I-12-323. OnePetro (2012)

    Google Scholar 

  39. Koornneef, J., Ramirez, A., Turkenburg, W., Faaij, A.: The environmental impact and risk assessment of CO2 capture, transport and storage–an evaluation of the knowledge base. Prog. Energ. Combust. 38(1), 62–86 (2012)

    Article  CAS  Google Scholar 

  40. Veritas, D.N.: Design and operation of CO2 pipelines, Norway, Det Norske Veritas, 1–42 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijian Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, S., Zhang, L. (2023). Corrosion in CO2 Capture and Transportation. In: Zhang, L. (eds) Corrosion in CO2 Capture, Transportation, Geological Utilization and Storage. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-2392-2_3

Download citation

Publish with us

Policies and ethics