Skip to main content

Review of Tuning Mass Dampers and Application of Improved Harmony Search

  • Chapter
  • First Online:
Optimization Methods for Structural Engineering

Abstract

In this chapter, a review of the optimum design of passive and active tuned mass dampers for structures is presented. Metaheuristics have been often used in the optimum design of tuned mass dampers. As an example, an improved harmony search algorithm is presented for the optimum design of active tuned mass dampers (ATMDs) using proportional integral derivative type controllers. The ATMD was also compared via passive tuned mass damper (TMD) and the optimum design results are presented for a 10-story structure with multiple cases of the time delay of the controller and stroke capacity of ATMD. ATMD is better than TMD in the reduction of displacements up to 32.01%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Rohman M, Leipholz HH (1983) Active control of tall buildings. J Struct Eng (ASCE) 109:628–645

    Article  Google Scholar 

  • Adam C, Furtmüller T (2010) Seismic performance of tuned mass dampers. In: Mechanics and model-based control of smart materials and structures. Springer, Vienna, pp 11–18

    Google Scholar 

  • Aldemir U (2003) Optimal control of structures with semiactive-tuned mass dampers. J Sound Vib 266(4):847–874

    Article  MathSciNet  Google Scholar 

  • Alhassan MA, Al-Rousan RZ, Al-Khasawneh SI (2020) Control of vibrations of common pedestrian bridges in Jordan using tuned mass dampers. Procedia Manuf 44:36–43

    Article  Google Scholar 

  • Amini F, Hazaveh NK, Rad AA (2013) Wavelet PSO-based LQR algorithm for optimal structural control using active tuned mass dampers. Comput Aided Civ Infra-Struct Eng 28(7):542–557

    Article  Google Scholar 

  • Ankireddi S, Yang HTY (1996) Simple ATMD control methodology for tall buildings subject to wind loads. J Struct Eng 122(1):83–91

    Google Scholar 

  • Bekdaş G, Nigdeli SM, Yang XS (2018) A novel bat algorithm based optimum tuning of mass dampers for improving the seismic safety of structures. Eng Struct 159:89–98

    Article  Google Scholar 

  • Bekdaş G, Kayabekir AE, Nigdeli SM, Toklu YC (2019) Tranfer function amplitude minimization for structures with tuned mass dampers considering soil-structure interaction. Soil Dyn Earthq Eng 116:552–562

    Article  Google Scholar 

  • Bishop RED, Welbourn DB (1952) The problem of the dynamic vibration ab-sorber. Engineering, Lond, 174:769

    Google Scholar 

  • Caicedo D, Lara-Valencia L, Blandon J, Graciano C (2021) Seismic response of high-rise buildings through metaheuristic-based optimization using tuned mass dampers and tuned mass dampers inerter. J Build Eng 34:101927

    Article  Google Scholar 

  • Cao L, Li C, Chen X (2020) Performance of multiple tuned mass dampers-inerters for structures under harmonic ground acceleration. Smart Struct Syst 26(1):49–61

    Google Scholar 

  • Den Hartog JP (1947) Mechanical vibrations. McGraw-Hill, New York

    MATH  Google Scholar 

  • De Domenico D, Ricciardi G (2018) Earthquake protection of existing structures with limited seismic joint: base isolation with supplemental damping versus rotational inertia. Adv Civ Eng

    Google Scholar 

  • Falcon KC, Stone BJ, Simcock WD, Andrew C (1967) Optimization of vibration absorbers: a graphical method for use on idealized systems with restricted damping. J Mech Eng Sci 9:374381

    Article  Google Scholar 

  • Farshidianfar A, Soheili S (2013) ABC optimization of TMD parameters for tall buildings with soil structure interaction, Interact. Multiscale Mech 6:339–356

    Google Scholar 

  • FEMA (2009) P-695: Quantification of building seismic performance factors. Washington

    Google Scholar 

  • Frahm H (1911) Device for damping of bodies. U.S. Patent No: 989,958

    Google Scholar 

  • Gaur S, Elias S, Höbbel T, Matsagar VA, Thiele K (2020) Tuned mass dampers in wind response control of wind turbine with soil-structure interaction. Soil Dyn Earthq Eng 132:106071

    Article  Google Scholar 

  • Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. simulation 76(2):60–68

    Google Scholar 

  • Greco R, Marano GC (2013) Optimum design of tuned mass dampers by displacement and energy perspectives. Soil Dyn Earthq Eng 49:243–253

    Article  Google Scholar 

  • Guclu R, Yazici H (2008) Vibration control of a structure with ATMD against earthquake using fuzzy logic controllers. J Sound Vib 318(1–2):36–49

    Article  Google Scholar 

  • Guclu R, Yazici H (2009a) Seismic-vibration mitigation of a nonlinear structural system with an ATMD through a fuzzy PID controller. Nonlinear Dyn 58(3):553

    Article  MATH  Google Scholar 

  • Guclu R, Yazici H (2009b) Self-tuning fuzzy logic control of a non-linear structural system with ATMD against earthquake. Nonlinear Dyn 56(3):199

    Article  MATH  Google Scholar 

  • Han B, Li C (2006) Seismic response of controlled structures with active multiple tuned mass dampers. Earthq Eng Eng Vib 5(2):205–213

    Article  Google Scholar 

  • Heidari AH, Etedali S, Javaheri-Tafti MR (2018) A hybrid LQR-PID control design for seismic control of buildings equipped with ATMD. Front Struct Civ Eng 12(1):44–57

    Article  Google Scholar 

  • Hemmati A, Oterkus E, Khorasanchi M (2019) Vibration suppression of offshore wind turbine foundations using tuned liquid column dampers and tuned mass dampers. Ocean Eng 172:286–295

    Article  Google Scholar 

  • Ioi T, Ikeda K (1978a) On the dynamic vibration damped absorber of the vibration system. Bulletin of the JSME 21:6471

    Article  Google Scholar 

  • Ioi T, Ikeda K (1978b) On the dynamic vibration damped absorber of the vibration system. Bulletin of JSME 21(151):64–71

    Article  Google Scholar 

  • Joshi AS, Jangid RS (1997) Optimum parameters of multiple tuned mass dampers for base-excited damped systems. J Sound Vib 202(5):657–667

    Article  Google Scholar 

  • Kamgar R, Khatibinia M (2019) Optimization criteria for design of tuned mass dampers including soil–structure interaction effect. Iran Univ Sci Technol 9(2):213–232

    Google Scholar 

  • Kaveh A, Javadi SM, Moghanni RM (2020) Optimal structural control of tall buildings using tuned mass dampers via chaotic optimization algorithm. Structures 28:2704–2713. Elsevier

    Google Scholar 

  • Kayabekir AE, Nigdeli SM, Bekdaş G (2021) A hybrid metaheuristic method for optimization of active tuned mass dampers. Comput Aided Civ Infrastructure Engineering.

    Google Scholar 

  • Kaynia AM, Veneziano D, Biggs JM (1981) Seismic effectiveness of tuned mass dampers. J Struct Div 107(8):1465–1484

    Article  Google Scholar 

  • Khatibinia M, Gholami H, Kamgar R (2018) Optimal design of tuned mass dampers subjected to continuous stationary critical excitation. Int J Dyn Control 6(3):1094–1104

    Article  MathSciNet  Google Scholar 

  • Khatibinia M, Mahmoudi M, Eliasi H (2020) Optimal sliding mode control for seismic control of buildings equipped with ATMD. Iran Univ Sci Technol 10(1):1–15

    Google Scholar 

  • Khatibinia M, Gholami H, Labbafi SF (2016) Multi–objective optimization of tuned mass dampers considering soil–structure interaction

    Google Scholar 

  • Lara-Valencia LA, Caicedo D, Valencia-Gonzalez Y (2021) A novel whale optimization algorithm for the design of tuned mass dampers under earthquake excitations. Appl Sci 11(13):6172

    Article  Google Scholar 

  • Leung AYT, Zhang H (2009) Particle swarm optimization of tuned mass dampers. Eng Struct 31(3):715–728

    Article  Google Scholar 

  • Li C (2012) Effectiveness of active multiple-tuned mass dampers for asymmetric structures considering soil–structure interaction effects. Struct Design Tall Spec Build 21(8):543–565

    Article  Google Scholar 

  • Li C, Xiong X (2008) Estimation of active multiple tuned mass dampers for asymmetric structures. Struct Eng Mech 29(5):505–530

    Article  Google Scholar 

  • Li C, Li J, Qu Y (2010) An optimum design methodology of active tuned mass damper for asymmetric structures. Mech Syst Signal Process 24(3):746–765

    Article  MathSciNet  Google Scholar 

  • Lin YY, Cheng CM, Lee CH (2000) A tuned mass damper for suppressing the coupled flexural and torsional buffeting response of long-span4bridges. Eng Struct 22(9):1195–1204

    Article  Google Scholar 

  • Mackriell LE, Kwok KCS, Samali B (1997) Critical mode control of a wind-loaded tall building using an active tuned mass damper. Eng Struct 19(10):834–842

    Article  Google Scholar 

  • MATLAB (2018) 9.7. 0.1190202 (R2019b), Natick, Massachusetts: The MathWorks Inc

    Google Scholar 

  • McNamara RJ (1977) Tuned mass dampers for buildings. J Struct Div 103(9):1785–1798

    Article  Google Scholar 

  • Mohebbi M, Shakeri K, Ghanbarpour Y, Majzoub H (2013) Designing optimal multiple tuned mass dampers using genetic algorithms (GAs) for mitigating the seismic response of structures. J Vib Control 19(4):605–625

    Article  Google Scholar 

  • Nigdeli SM, Bekdas G (2015) Teaching-learning-based optimization for estimating tuned mass damper parameters. In: 3rd International conference on optimization techniques in engineering (OTENG’15), 7–9 Nov, Rome, Italy

    Google Scholar 

  • Ormondroyd J, Den Hartog JP (1928) The theory of dynamic vibration absorber. T ASME 50:922

    Google Scholar 

  • Pietrosanti D, De Angelis M, Basili M (2017) Optimal design and performance evaluation of systems with Tuned Mass Damper Inerter (TMDI). Earthquake Eng Struct Dynam 46(8):1367–1388

    Article  Google Scholar 

  • Pourzeynali S, Lavasani HH, Modarayi AH (2007) Active control of high rise building structures using fuzzy logic and genetic algorithms. Eng Struct 29(3):346–357

    Article  Google Scholar 

  • Pourzeynali S, Salimi S, Kalesar HE (2013) Robust multi-objective optimization design of TMD control device to reduce tall building responses against earthquake excitations using genetic algorithms. Scientia Iranica 20(2):207–221

    Google Scholar 

  • Qu ZQ, Shi Y, Hua H (2001) A reduced-order modeling technique for tall buildings with active tuned mass damper. Earthquake Eng Struct Dynam 30(3):349–362

    Article  Google Scholar 

  • Sadek F, Mohraz B, Taylor AW, Chung RM (1997) A method of estimating the parameters of tuned mass dampers for seismic applications. Earthquake Eng Struct Dynam 26:617635

    Article  Google Scholar 

  • Samali B, Al-Dawod M (2003) Performance of a five-storey benchmark model using an active tuned mass damper and a fuzzy controller. Eng Struct 25(13):1597–1610

    Article  Google Scholar 

  • Samali B, Al-Dawod M, Kwok KC, Naghdy F (2004) Active control of cross wind response of 76-story tall building using a fuzzy controller. J Eng Mech 130(4):492–498

    Article  Google Scholar 

  • Shariatmadar H, Meshkat Razavi H (2014) Seismic control response of structures using an ATMD with fuzzy logic controller and PSO method. Struct Eng Mech 51

    Google Scholar 

  • Shariatmadar H, Golnargesi S, Akbarzadeh Totonchi MR (2014) Vibration control of buildings using ATMD against earthquake excitations through interval type-2 fuzzy logic controller. Asian J Civ Eng Build Housing:15

    Google Scholar 

  • Snowdon JC (1959) Steady-state behavior of the dynamic absorber. J Acoust Soc Am 31:10961103

    Google Scholar 

  • Soleymani M, Khodadadi M (2014) Adaptive fuzzy controller for active tuned mass damper of a benchmark tall building subjected to seismic and wind loads. Struct Design Tall Spec Build 23(10):781–800

    Article  Google Scholar 

  • Ulusoy S, Kayabekir AE, Nigdeli SM, Bekdaş G (2021) Metaheuristic-based structural control methods and comparison of applications. In: Nature-inspired metaheuristic algorithms for engineering optimization applications. Springer, Singapore, pp 251–276

    Google Scholar 

  • Villaverde R (1985) Reduction seismic response with heavily-damped vibration absorbers. Earthquake Eng Struct Dynam 13(1):33–42

    Article  Google Scholar 

  • Wang YZ, Wang KS (1988) The optimal design of a dynamic absorber for an arbitrary planar structure. Appl Acoust 23(2):85–98

    Article  Google Scholar 

  • Warburton GB (1982) Optimum absorber parameters for various combination of response and excitation parameters. Earthquake Eng Struct Dynam 10:381401

    Article  Google Scholar 

  • Warburton GB, Ayorinde EO (1980) Optimum absorber parameters for simple systems. Earthquake Eng Struct Dynam 8:197217

    Article  Google Scholar 

  • Wirsching PH, Campbell GW (1973) Minimal structural response under random excitation using the vibration absorber. Earthquake Eng Struct Dynam 2(4):303–312

    Article  Google Scholar 

  • Yan N, Wang CM, Balendra T (1999) Optimal damper characteristics of ATMD for buildings under wind loads. J Struct Eng 125(12):1376–1383

    Article  Google Scholar 

  • Yang Y, Li C (2017) Performance of tuned tandem mass dampers for structures under the ground acceleration. Struct Control Health Monit 24(10):e1974

    Article  Google Scholar 

  • You KP, You JY, Kim YM (2014) LQG control of along-wind response of a tall build-ing with an ATMD. Mathe Probl Eng

    Google Scholar 

  • Yucel M, Bekdaş G, Nigdeli SM, Sevgen S (2019) Estimation of optimum tuned mass damper parameters via machine learning. J Build Eng 26:100847

    Article  Google Scholar 

  • Zuk W (1968) Kinetic structures. Civil Eng 39(12):62–64

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gebrail Bekdaş .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bekdaş, G., Nigdeli, S.M., Kayabekir, A.E., Ulusoy, S., Geem, Z.W. (2023). Review of Tuning Mass Dampers and Application of Improved Harmony Search. In: Kale, I.R., Sadollah, A. (eds) Optimization Methods for Structural Engineering. Engineering Optimization: Methods and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-99-2378-6_1

Download citation

Publish with us

Policies and ethics