Skip to main content

An Empirical Analysis and Challenging Era of Blockchain in Green Society

  • Conference paper
  • First Online:
Communication and Intelligent Systems (ICCIS 2022)

Abstract

Blockchain is one of the new inventions that can help develop sustainable and sustainable solutions as it is able to provide accountability, transparency, online tracking and robustness, and improve the efficiency of global collaboration. A massive increase in electricity demand has created a new dilemma. Power businesses, startups, commercial banks, policymakers, and researchers are all interested in blockchain technology, which has become the most generally acknowledged IoT Technology. Therefore, blockchain technology efforts from both industry and education have been included in the study. Recently, the blockchain has been employed as a new approach for developing and enhancing green societies. A full examination of all the constraints and potential of the blockchain through technological ideas is required. In this article, tremendous attempts are underway to thoroughly investigate the complete foundation of the green community and how the blockchain contributes to the green community. Finally, this article also highlights the applications and challenges of the green chain-driven community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharma PK, Kumar N, Park JH (2020) Blockchain technology toward green IoT: opportunities and challenges. IEEE Network 34(4):263–269. https://doi.org/10.1109/MNET.001.1900526

    Article  Google Scholar 

  2. Ferrag MA, Shu L, Yang X, Derhab A, Maglaras L (2020) Security and privacy for green IoT-based agriculture: review, blockchain solutions, and challenges. IEEE Access 8:32031–32053. https://doi.org/10.1109/ACCESS.2020.2973178

  3. Rane SB, Thakker SV (2019) Green procurement process model based on blockchain–IoT integrated architecture for a sustainable business. Manage Environ Qual Int J. Emerald Publishing Limited. https://doi.org/10.1108/MEQ-06-2019-0136

  4. Patil AS, Tama BA, Park Y, Rhee K-H (2018) A framework for blockchain based secure smart green house farming. In: Advances in Computer Science and Ubiquitous Computing. Springer, Singapore, pp 1162–1167. https://doi.org/10.1007/978-981-10-7605-3_185

  5. Aravindhan K, Sangeetha SKB, Periyakaruppan K, Manoj E, Sivani R, Ajithkumar S (2021) Smart charging navigation for VANET based electric vehicles. In: 7th International conference on advanced computing and communication systems (ICACCS). IEEE, pp 1588–1591. https://doi.org/10.1109/ICACCS51430.2021.9441842

  6. Aravindhan K, Sangeetha SKB, Periyakaruppan K, Keerthana KP, Giridhar VS, Shamaladevi V (2021) Design of attendance monitoring system using RFID. In: 7th International conference on advanced computing and communication systems (ICACCS). IEEE, pp 1628–1631. https://doi.org/10.1109/ICACCS51430.2021.9441704

  7. Ahmad R, Asim MA, Khan SZ, Singh B (2019) Green IoT—Issues and challenges. In: Proceedings of 2nd international conference on advanced computing and software engineering (ICACSE) (SSRN). Retrieved from https://ssrn.com/abstract=3350317 (or) http://dx.doi.org/10.2139/ssrn.3350317

  8. Al-Saqaf W, Seidler N (2017) Blockchain technology for social impact: opportunities and challenges ahead. J Cyber Policy 2(3):338–354. https://doi.org/10.1080/23738871.2017.1400084

    Article  Google Scholar 

  9. Bajaj PS, Bansod SV, Paul ID (2018) A review on the green supply chain management (GSCM) practices, implementation and study of different framework to get the area of research in GSCM. In: Techno-Societal. (ICATSA 2016). Springer, Cham, pp 193–199. https://doi.org/10.1007/978-3-319-53556-2_20

  10. Chohan UW (2019) Blockchain and environmental sustainability: case of IBM’s blockchain water management. In: Notes on the 21st Century (CBRI) (SSRN). Retrieved from https://ssrn.com/abstract=3334154 (or) http://dx.doi.org/10.2139/ssrn.3334154

  11. Jiang L, Xie S, Maharjan S, Zhang Y (2019) Blockchain empowered wireless power transfer for green and secure internet of things. IEEE Network 33(6):164–171. https://doi.org/10.1109/MNET.001.1900008

  12. Leonardo RR, Giungato P, Tarabella A, Tricase C (2019) Blockchain applications and sustainability issues. Amfiteatru Econ J 21(S13):861–870. https://doi.org/10.24818/EA/2019/S13/861

  13. Liu X, Ansari N (2019) Toward green IoT: energy solutions and key challenges. IEEE Commun Mag 57(3):104–110. https://doi.org/10.1109/MCOM.2019.1800175

    Article  Google Scholar 

  14. Liu J, Lv J, Dinçer H, Yüksel S, Karakuş H (2021) Selection of renewable energy alternatives for green blockchain investments: a hybrid IT2-based fuzzy modelling. Arch Comput Methods Eng 28:3687–3701. https://doi.org/10.1007/s11831-020-09521-2

    Article  Google Scholar 

  15. Ranjani V, Sangeetha SKB (2014) Wireless data transmission in ZigBee using indegree and throughput optimization. In: International conference on information communication and embedded systems (ICICES2014). IEEE, pp 1–5. https://doi.org/10.1109/ICICES.2014.7033901

  16. Sezen B, Çankaya SY (2018) Green supply chain management theory and practices. In: Operations and service management: concepts, methodologies, tools, and applications, edited by Information Resources Management Association, IGI Global, 2018, pp. 118–141. https://doi.org/10.4018/978-1-5225-3909-4.ch006

  17. Taskinsoy J (2019) Blockchain: an unorthodox solution to reduce global warming. In: SSRN: Retrieved from https://ssrn.com/abstract=3475144 (or) http://dx.doi.org/10.2139/ssrn.3475144

  18. Yunus E, Michalisin MD (2016) Sustained competitive advantage through green supply chain management practices: a natural-resource-based view approach. Int J Serv Oper Manage 25(2):135–154. https://doi.org/10.1504/IJSOM.2016.078890

  19. Prabha R, Razmah M, Asha RM, Subashini V (2020) Blockchain based decentralized system to ensure the transparency of organic food. EEO 19(2):1828–1837. https://doi.org/10.17051/ilkonline.2020.02.696766

  20. Jayaraman R, Nisha ASA, Somasundaram K, Karthikeyan C, Babu DV, and Prabha R (2022) Effective COVID monitoring process to observe patients status using blockchain. In: 2022 7th International conference on communication and electronics systems (ICCES). IEEE, pp 804–811. https://doi.org/10.1109/ICCES54183.2022.9835995

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Senthil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Senthil, G.A., Prabha, R., Divya, B., Sathya, A. (2023). An Empirical Analysis and Challenging Era of Blockchain in Green Society. In: Sharma, H., Shrivastava, V., Bharti, K.K., Wang, L. (eds) Communication and Intelligent Systems. ICCIS 2022. Lecture Notes in Networks and Systems, vol 689. Springer, Singapore. https://doi.org/10.1007/978-981-99-2322-9_15

Download citation

Publish with us

Policies and ethics