Skip to main content

Nullity of Graphs—A Survey and Some New Results

  • Chapter
  • First Online:
Applied Linear Algebra, Probability and Statistics

Abstract

The spectrum of a graph G is the set of eigenvalues of the adjacency matrix of G. The nullity \(\eta (G)\), which is the algebraic multiplicity of the number zero in the spectrum of G, is a graph spectrum-based invariant. In the context of the H\(\overset{..}{\text {u}}\)ckel Molecular Orbital theory, the nullity of a molecular graph is used to determine the stability of unsaturated conjugated hydrocarbons. In this paper, we present a survey of significant results on nullity, such as bounds, transformations preserving nullity, nullity of line graphs, nullity versus energy and graphs with high nullity, along with some new results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashraf F, Bamdad H (2008) A note on graphs with zero nullity. MATCH- Commun Math Comput Chem 60(1):15–19

    MathSciNet  MATH  Google Scholar 

  2. Borovicanin B, Gutman I (2008) Nullity of graphs. Zborruk Radova 13(21):107–122

    MathSciNet  MATH  Google Scholar 

  3. Chang GJ, Huang L, Yeh H (2011) A characterization of graphs with rank 4. Linear Algebra Appl 434(8):1793–1798

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheng B, Liu B (2007) On the nullity of graphs. Electron J Linear Algebra 16:60–67

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheng B, Liu B (2011) On the nullity of tricyclic graphs. Linear Algebra Appl 434(8):1799–1810

    Article  MathSciNet  MATH  Google Scholar 

  6. Coulson CA, O’Leary B, BMallion R (1978) Hückel theory for organic chemists. Academic Press, London

    Google Scholar 

  7. Cvetković DM, Gutman I (1972) The algebraic multiplicity of the number zero in the spectrum of a bipartite graph. Matematički Vesnik 9(24):141–150

    MathSciNet  MATH  Google Scholar 

  8. Cvetković D, Gutman I, Trinajstić N (1975) Graphical studies on the relations between the structure and reactivity of conjugated systems: the role of non-bonding molecular orbitals. J Mol Struct 28:289–303

    Article  Google Scholar 

  9. Dias J (1999) Resonance structures of benzenoid conjugated radicals. Phys Chem Chem Phys 1(22):5081–5086

    Article  Google Scholar 

  10. Ellingham MN (1993) Basic subgraphs and graph spectra. Austral J Comb 8:247–266

    MathSciNet  MATH  Google Scholar 

  11. Fiorini S, Gutman I, Sciriha I (2005) Trees with maximum nullity. Linear Algebra Appl 397:245–251

    Article  MathSciNet  MATH  Google Scholar 

  12. Gong S, Xu GH (2012) On the nullity of a graph with cut-points. Linear Algebra Appl 436(1):135–142

    Article  MathSciNet  MATH  Google Scholar 

  13. Graovac A, Gutman I, Trinajstić N (1977) Topological approach to the chemistry of conjugated molecules. Springer, Berlin

    Book  MATH  Google Scholar 

  14. Gutman I (1978) The energy of a graph. Ber Math-Statist Sekt Forshungsz Graz 103:1–22

    MATH  Google Scholar 

  15. Gutman I (2021) Computing the dependence of graph energy on nullity: the method of siblings. Discr Math Lett 7:30–33

    Article  MathSciNet  MATH  Google Scholar 

  16. Gutman I (2021) Graph energy and nullity. Open J Discret Appl Math 4:25–28

    Article  MathSciNet  Google Scholar 

  17. Gutman I, Sciriha I (2001) On the nullity of line graphs of trees. Discrete Math 232(1–3):35–45

    Article  MathSciNet  MATH  Google Scholar 

  18. Gutman I, Triantafillou T (2016) Dependence of graph energy and nullity, a case study. MATCH- Commun Math Comput Chem 76:761–769

    MathSciNet  MATH  Google Scholar 

  19. Gutman I, Cmiljanović N, Milosavljević S, Radenković S (2004) Effect of nonbonding molecular orbitals on total \(\pi \)-electron energy. Chem Phys Lett 383(1–2):171–175

    Article  Google Scholar 

  20. Hu S, Xuezhong T, Liu B (2008) On the nullity of bicyclic graphs. Linear Algebra Appl 429(7):1387–1391

    Article  MathSciNet  MATH  Google Scholar 

  21. Li J, Chang A, Shiu WC (2008) On the nullity of bicyclic graphs. MATH Commun Math Compt Chem 60:21–36

    MathSciNet  MATH  Google Scholar 

  22. Li S (2008) On the nullity of graphs with pendant vertices. Linear Algebra Appl 429(7):1619–1628

    Article  MathSciNet  MATH  Google Scholar 

  23. Longuet-Higgins HC (1950) Some studies in molecular orbital theory I. Resonance structure and MO in unsaturated hydrocarbons. J Chem Phys 18(3):265–274

    Google Scholar 

  24. Ma H, Li D, Xie C (2020) Non-singular trees, unicyclic graphs and bicyclic graphs. Appl Math 11:1–7

    Article  Google Scholar 

  25. Mohiaddin GH, Sharaf KR (2021) Change of nullity of a graph under two operations. Kuwait J Sci 48(4)

    Google Scholar 

  26. Mustapha A, Hansen P (2017) On the nullity number of graphs. Electron J Graph Theory Appl 2(5):335–346

    MathSciNet  MATH  Google Scholar 

  27. Omidi GR (2009) On the nullity of bipartite graphs. Graphs Combin 25:111–114

    Article  MathSciNet  MATH  Google Scholar 

  28. Sachs H (1964) Beziehungen zwischen den in einem graphen enthaltenen kreisenund seinem charakteristischen polynom. Publ Math (Debrecen) 11:119–134

    Article  MathSciNet  MATH  Google Scholar 

  29. Santhakumaran AP, Titus P (2017) Monophonic distance in graphs. Graph theory—advanced algorithms and applications InTech

    Google Scholar 

  30. Sciriha I (1998) On the construction of graphs of nullity one. Discrete Math 181(1–3):193–211

    Article  MathSciNet  MATH  Google Scholar 

  31. Von CL, Sinogowitz U (1957) Spectras of finite graphs. Abh Math Sem Univ Hamburg 21(1):63–77

    MathSciNet  Google Scholar 

  32. Wang L, Geng X (2020) Proof of a conjecture on the nullity of a graph. J Graph Theory 95(4):586–593

    Article  MathSciNet  Google Scholar 

  33. Xuezhong T, Liu B (2005) On the nullity of unicyclic graphs. Linear Algebra Appl 408:212–220

    Article  MathSciNet  MATH  Google Scholar 

  34. Yates K (1978) Hu\(\ddot{\text{ c }}\)kel Molecular Orbital Theory. Academic Press, New York

    Google Scholar 

  35. Zhou Q, Wong D, Sun D (2018) An upper bound of the nullity of a graph in terms of order and maximum degree. Linear Algebra Appl 555:314–320

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Among the authors, Manjunatha Prasad Karantha wishes to acknowledge the funding support by Science and Engineering Research Board (DST), India, through the projects CRG/2019/000238 and MTR/2018/000156.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Arumugam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arumugam, S., Arathi Bhat, K., Gutman, I., Karantha, M.P., Poojary, R. (2023). Nullity of Graphs—A Survey and Some New Results. In: Bapat, R.B., Karantha, M.P., Kirkland, S.J., Neogy, S.K., Pati, S., Puntanen, S. (eds) Applied Linear Algebra, Probability and Statistics. Indian Statistical Institute Series. Springer, Singapore. https://doi.org/10.1007/978-981-99-2310-6_8

Download citation

Publish with us

Policies and ethics