Skip to main content

Role of Phosphate Solubilizing Microbes on Phosphorous Availability and Yield Attributes of Millet

  • Chapter
  • First Online:
Millet Rhizosphere

Abstract

Millets produce particularly well under poor nutrient conditions, including under low phosphorous (P) soils. The use of phosphate fertilizers associated with inoculation with P-solubilizing microorganisms (PSM) has proved to be a technology that meets the precepts of ecological intensification of agriculture, both by reducing the use of synthetics in these environments and by adding beneficial microorganisms. PSM are able to convert complexed insoluble phosphates to soluble phosphate forms, which can easily be assimilated by plants, through production of organic acids, siderophores, protons, and hydroxyl ions. In general, the use of PSM can be optimized with the appropriate combination of strains, plant genotypes, and environmental conditions. In this chapter, we highlighted the potential use of PSM collected in different types of soil to increase P uptake and millet yield. In Brazil, we showed the release and use of an inoculant containing two bacterial strains, isolated from agricultural areas in the country, capable of increasing P use efficiency and crop yield. We also described that the co-inoculation of N-fixer and P-solubilizer microorganisms can have beneficial effects on germination, seedling vigor, plant height, seed weight, and grain yield of pearl millet under controlled conditions. Arbuscular mycorrhizal fungi (AMF) were also reported as a promising strategy for increasing yield as they can enhance P uptake in millet allowing higher soil exploration beyond the rhizosphere depletion zone. In addition, AMF can solubilize P present in the soil by different mechanisms, such as production of phosphatases, organic acids, siderophores, and protons. Overall, this chapter approached the need to expand studies focusing on the use of PSM in millet crops associated with the prospection and characterization of more efficient PSM. Moreover, we suggested that more field studies under different edaphoclimatic conditions and using different millet genotypes should be performed to understand the interactions between bioinoculants and native microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu CS, Figueiredo JE, Oliveira-Paiva CA, Dos Santos VL, Gomes EA, Ribeiro VP, Barros BD, Lana UD, Marriel IE (2017) Maize endophytic bacteria as mineral phosphate solubilizers. Genet Mol Res 16:1–13

    Google Scholar 

  • Almeida CNS, Santos FC, Marriel IE, Gomes EA, Freitas A, Oliveira-Paiva CA (2016) Adubação organomineral em associação com microrganismos solubilizadores de fósforo no milheto. Boletim de Pesquisa e Desenvolvimento, Embrapa Milho e Sorgo. 147 p.

    Google Scholar 

  • Bahadir PS, Liaqat F, Eltem R (2018) Plant growth promoting properties of phosphate solubilizing Bacillus species isolated from the Aegean Region of Turkey. Turk J Bot 42:183–196

    CAS  Google Scholar 

  • Bambharolia RP, Khunt MD, Deshmukh AJ, Prajapati VP, Vavdiya PA (2020) Isolation, screening, and characterization of endophytic bacteria from root of finger millet (Eleusine coracana L.) for different plant growth promotion (PGP) activities: an in-vitro study. J Pharmacogn Phytochem 9:539–545

    CAS  Google Scholar 

  • Barros VA, Chandnani R, De Sousa SM, Maciel LS, Tokizawa M, Guimaraes CT, Magalhaes JV, Kochian LV (2020) Root Adaptation via common genetic factors conditioning tolerance to multiple stresses for crops cultivated on acidic tropical soils. Front Plant Sci 11:565339

    PubMed  PubMed Central  Google Scholar 

  • Beggi F, Hamidou F, Hash CT, Buerkert A (2016) Effects of early mycorrhization and colonized root length on low-soil-phosphorus resistance of West African pearl millet. J Plant Nutr Soil Sci 179:466–471

    CAS  Google Scholar 

  • Bindraban PS, Dimkpa CO, Pandey R (2020) Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biol Fertil Soils 56:299–317

    CAS  Google Scholar 

  • Brookes PC, Powlson DS, Jenkinson DS (1984) Phosphorus in the soil microbial biomass. Soil Biol Biochem 16:169–175

    CAS  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. App Soil Ecol 34:33–41

    Google Scholar 

  • Cordell D, White S (2011) Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 3:2027–2049

    Google Scholar 

  • Etesami H, Maheshwari DK (2018) Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: action mechanisms and future prospects. Ecotoxicol Environ Saf 156:225–246

    CAS  PubMed  Google Scholar 

  • Gaind S (2013) Pseudomonas striata for improving phosphorus availability in soil under pearl millet cultivation. J Crop Improv 27:255–271

    CAS  Google Scholar 

  • George TS, Gregory PJ, Wood M, Read D, Buresh RJ (2002) Phosphatase activity and organic acids in the rhizosphere of potential agroforestry species and maize. Soil Biol Biochem 34:1487–1494

    CAS  Google Scholar 

  • GlobalFert (2020) Importação de fertilizantes bate recorde em 2020. https://www.globalfert.com.br/analises/importacao-de-fertilizantes-bate-recorde-em-2020/. Accessed 9 Mar 2021

  • Gomes E, Silva U, Marriel I, Oliveira C, Lana U (2014) Rock phosphate solubilizing microorganisms isolated from maize rhizosphere soil. Rev Bras Milho e Sorgo 13:69–81

    Google Scholar 

  • Harinathan B, Sankaralingam S, Palpperumal S, Kathiresan D, Shankar T, Prabhu D (2016) Effect of phosphate solubilizing bacteria on growth and development of pearl millet and ragi. J Adv Biol Biotechnol 7:1–7

    Google Scholar 

  • Havlin J, Beaton J, Tisdale SL, Nelson W (1999) Soil fertility and fertilizers: an introduction to nutrient management. Prentice Hall, Upper Saddle River, NJ, p c1999

    Google Scholar 

  • Jain A, Poling MD, Karthikeyan AS, Blakeslee JJ, Peer WA, Titapiwatanakun B, Murphy AS, Raghothama KG (2007) Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis. Plant Phys 144:232–247

    CAS  Google Scholar 

  • Jiang Y, Wang W, Xie Q, Liu N, Liu L, Wang D, Zhang X, Yang C, Chen X, Tang D, Wang E (2017) Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356:1172–1175

    CAS  PubMed  Google Scholar 

  • Jorquera MA, Crowley DE, Marschner P, Greiner R, Fernández MT, Romero D, Menezes-Blackburn D, De La Luz MM (2011) Identification of β-propeller phytase-encoding genes in culturable Paenibacillus and Bacillus spp. from the rhizosphere of pasture plants on volcanic soils. FEMS Microbiol Ecol 75:163–172

    CAS  PubMed  Google Scholar 

  • Kalayu G (2019, 2019) Phosphate solubilizing microorganisms: promising approach as biofertilizers. Internat J Agron:7

    Google Scholar 

  • Kandhasamy N, Ravichandran KR, Thangavelu M (2020) Interactive influence of soil and plant genotypes on mycorrhizal dependency in Finger Millet. J Soil Sci Plant Nutr 20:1287–1297

    CAS  Google Scholar 

  • Kour D, Rana KL, Kaur T, Sheikh I, Yadav AN, Kumar V, Dhaliwal HS, Saxena AK (2020a) Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolour L.) by drought-adaptive and phosphorus-solubilizing microbes. Biocatal Agric Biotechnol 23:101501

    Google Scholar 

  • Kour D, Rana KL, Yadav AN, Sheikh I, Kumar V, Dhaliwal HS, Saxena AK (2020b) Amelioration of drought stress in Foxtail millet (Setaria italica L.) by P-solubilizing drought-tolerant microbes with multifarious plant growth promoting attributes. Environ Sustain 3:23–34

    Google Scholar 

  • Kowalska J, Tyburski J, Matysiak K, Tylkowski B, Malusa E (2020) Field exploitation of multiple functions of beneficial microorganisms for plant nutrition and protection: real possibility or just a hope? Front Microbiol 11:1904

    PubMed  PubMed Central  Google Scholar 

  • Kundu BS, Nandal K, Tiwari M, Tomar M (2006) Establishment and influence of phosphate solubilizing bacteria on pearl millet. Indian J Plant Physiol 11:201–205

    Google Scholar 

  • Kushwaha P, Kashyap PL, Kuppusamy P, Srivastava AK, Tiwari RK (2020a) Functional characterization of endophytic bacilli from pearl millet (Pennisetum glaucum) and their possible role in multiple stress tolerance. Plant Biosyst 54:503–514

    Google Scholar 

  • Kushwaha P, Kashyap PL, Srivastava AK, Tiwari RK (2020b) Plant growth promoting and antifungal activity in endophytic Bacillus strains from pearl millet (Pennisetum glaucum). Braz J Microbiol 51:229–241

    CAS  PubMed  Google Scholar 

  • Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV, Breakspear A, Oldroyd GED, Eastmond PJ (2017) Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356:1175–1178

    CAS  PubMed  Google Scholar 

  • Mackay JE, Cavagnaro TR, Müller Stöver DS, Macdonald LM, Gronlund M, Jakobsen I (2017) A key role for arbuscular mycorrhiza in plant acquisition of P from sewage sludge recycled to soil. Soil Biol Biochem 115:11–20

    CAS  Google Scholar 

  • Malhotra H, Sharma S, Pandey R (2018) Phosphorus nutrition: plant growth in response to deficiency and excess. In: Hasanuzzaman M, Fujita M, Oku H, Nahar K, Hawrylak-Nowak B (eds) Plant nutrients and abiotic stress tolerance. Springer, Singapore, pp 171–190

    Google Scholar 

  • Mcgill WB, Cole CV (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26:267–286

    CAS  Google Scholar 

  • Misganaw G, Simachew A, Gessesse A (2019) Endophytes of finger millet (Eleusine coracana) seeds. Symbiosis 78:203–213

    Google Scholar 

  • Misra N, Gupta G, Jha PN (2012) Assessment of mineral phosphate-solubilizing properties and molecular characterization of zinc-tolerant bacteria. J Basic Microbiol 52:549–558

    CAS  PubMed  Google Scholar 

  • Nalini P, Ellaiah P, Prabhakar T, Girijasankar G (2015) Microbial alkaline phosphatase in bioprocessing. Int J Curr Microbiol Appl Sci 4:384–396

    CAS  Google Scholar 

  • Neal AL, Rossmann M, Brearley C, Akkari E, Guyomar C, Clark IM, Allen E, Hirsch PR (2017) Land use influences phosphatase gene microdiversity in soils. Environ Microbiol 19:2740–2753

    CAS  PubMed  Google Scholar 

  • Niu IF, Chai RS, Jin LG, Wang H, Tang CX, Zhang YS (2013) Responses of root architecture development to low phosphorus availability: a review. Ann Bot 112:391–408

    CAS  PubMed  Google Scholar 

  • Novais RF, Alvarez VH, Barros NF, Fontes RLF, Cantarutti RB, Neves JCL (2007) Fertilidade do solo. Viçosa, MG, Sociedade Brasileira de Ciência do Solo, 1017 p.

    Google Scholar 

  • Oliveira-Paiva CA, Alves VMC, Marriel IE, Gomes EA, Scotti MR, Carneiro NP, Guimarães CT, Schaffert RE, Sá NMH (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biom. Soil Biol Bioch 41:1782–1787

    Google Scholar 

  • Parentoni SN, Souza CL Jr (2008) Phosphorus acquisition and internal utilization efficiency in tropical maize genotypes. Pesq Agrop Bras 43:893–901

    Google Scholar 

  • Pavinato PS, Cherubin MR, Soltangheis A, Rocha GC, Chadwick DR, Jones DL (2020) Revealing soil legacy phosphorus to promote sustainable agriculture in Brazil. Sci Rep 10:15615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poonguzhali S, Madhaiyan M, Thangaraju M, Ryu J, Chung K, Sa T (2005) Effects of co-cultures, containing N-fixer and P-solubilizer, on the growth and yield of pearl millet (Pennisetum glaucum (L.) R. Br.) and blackgram (Vigna mungo L.). J Microbiol Biotech 15:903–908

    CAS  Google Scholar 

  • Rafi MMD, Varalakshmi T, Charyulu PBBN (2012) Influence of Azospirillum and PSB inoculation on growth and yield of Foxtail Millet. J Microbiol Biotech Res 2:558–565

    Google Scholar 

  • Raghav N, Jangra S, Singh M, Kaur R, Rohilla A (2011) In-vitro studies of some chalcones on acid phosphatase. Int J Appl Biol Pharm 2:193–198

    Google Scholar 

  • Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693

    CAS  PubMed  Google Scholar 

  • Ramaekers L, Remans R, Rao IM, Blair MW, Vanderleyden J (2010) Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crops Res 117:169–176

    Google Scholar 

  • Rengel Z (2001) Genotypic differences in micronutrient use efficiency in crops. Commun Soil Sci Plant Anal 32:1163–1186

    CAS  Google Scholar 

  • Rengel Z, Marschner P (2005) Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytologist 168:305–312

    CAS  PubMed  Google Scholar 

  • Ribeiro VP, Marriel IE, Sousa SM, Lana UGP, Mattos BB, Oliveira CA, Gomes EA (2018) Endophytic Bacillus strains enhance pearl millet growth and nutrient uptake under low-P. Braz J Microbiol 49:40–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AE, Barea J-M, Mcneill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    CAS  Google Scholar 

  • Rodríguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21

    Google Scholar 

  • Samreen S, Kausar S (2019) Phosphorus—recovery and recycling. In Zhang T (ed.) Intech Open. 104 p.

    Google Scholar 

  • Sanchez P, Logan T (1992) Myths and science about the chemistry and fertility of soils in the tropics. In: Lal R, Sanchez P (eds) Myths and science of soils of the tropics, vol 29. Soil Science Society of America, Madison, pp 35–46

    Google Scholar 

  • Santos FC, Coelho AM, Resende AV, Assis RL (2010) Fertilidade de solos. Sistemas de produção 2 - Cultivo do milheto, vol 1, 5th edn. Embrapa Informação Tecnológica, Brasília, pp 1–12

    Google Scholar 

  • Santos FC, Reis DP, Gomes EA, Ladeira DA, Oliveira AC, Melo IG, Souza FF, Mattos BB, Campos CN, Oliveira-Paiva CA (2022) Influence of phosphorus-solubilizing microorganisms and phosphate amendments on pearl millet growth and nutrient use efficiency in different soils types. Afr J Microbiol Res 16:95–103

    Google Scholar 

  • Schueler TA, Dourado ML, Rizzo ACL (2019) Processos biotecnológicos para a solubilização de rochas fosfáticas: o estado da arte. Cetem, Rio de Janeiro, p 45

    Google Scholar 

  • Sharif M, Ahmad E, Sarir MS, Muhammad D, Shafi M, Bakht J (2011) Response of different crops to arbuscular mycorrhiza fungal inoculation in phosphorus-deficient soil. Commun Soil Sci Plant Anal 42:2299–2309

    CAS  Google Scholar 

  • Sharma S, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:587

    PubMed  PubMed Central  Google Scholar 

  • Silva UC, Cuadros-Orellana S, Silva DRC, Freitas-Júnior LF, Fernandes AC, Leite LR, Oliveira CA, Dos Santos VL (2021) Genomic and phenotypic insights into the potential of rock phosphate solubilizing bacteria to promote millet growth in vivo. Front Microbiol 11:574550

    PubMed  PubMed Central  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Smith FA, Grace EJ, Smith SE (2009) More than a carbon economy: Nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytologist 182:347–358

    CAS  PubMed  Google Scholar 

  • Son H, Park G, Cha M, Heo M (2006) Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Biores Tech 97:204–210

    CAS  Google Scholar 

  • Sousa SM, Oliveira CA, Andrade DL, Carvalho CG, Ribeiro VP, Pastina MM, Marriel IE, Lana UGP, Gomes EA (2021) Tropical Bacillus strains inoculation enhances maize root surface area, dry weight, nutrient uptake and grain yield. J Plant Growth Regul 40:867–877

    Google Scholar 

  • Souza RM, Sobral LF, Viégas PRA, Oliveira-Júnior A, Carvalho MCS (2014) Eficiência agronômica de fosfatos de rocha em solo com elevado teor de cálcio trocável. Rev Bras Cienc Solo 38:1816–1825

    Google Scholar 

  • Su JQ, Ding LJ, Xue K, Yao HY, Quensen J, Bai S (2015) Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil. Mol Ecol 24:136–150

    CAS  PubMed  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    CAS  PubMed  Google Scholar 

  • Veer SA, Goel R (2015) Plant growth promoting efficiency of Chryseobacterium sp. PSR 10 on finger millet (Eleusine coracana). J Global Bios 4:2569–2575

    Google Scholar 

  • Velloso CC, Oliveira CA, Gomes EA, Lana UGP, Carvalho CG, Guimarães LJM, Pastina MM, Sousa SM (2020) Genome-guided insights of tropical Bacillus strains efficient in maize growth promotion. FEMS Microbiol Ecol 96:fiaa157

    CAS  Google Scholar 

  • White PJ, Hammond JP (2008) Phosphorus nutrition of terrestrial plants. In: White PJ, Hammond JP (eds) The ecophysiology of plant phosphorus interactions, vol 7. Springer, Dordrecht, pp 51–81

    Google Scholar 

  • Yokoyama D, Imai N, Kitayama K (2017) Effects of nitrogen and phosphorus fertilization on the activities of four different classes of fine-root and soil phosphatases in Bornean tropical rain forests. Plant Soil 416:463–476

    CAS  Google Scholar 

  • Zhou K, Binkley D, Doxtader KG (1992) A new method for estimating gross phosphorus mineralization and immobilization rates in soils. Plant Soil 147:243–250

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Abreu de Oliveira Paiva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gomes, E.A., de Sousa, S.M., de Paula Lana, U.G., dos Santos, F.C., Marriel, I.E., de Oliveira Paiva, C.A. (2023). Role of Phosphate Solubilizing Microbes on Phosphorous Availability and Yield Attributes of Millet. In: Pudake, R.N., Kumari, M., Sapkal, D.R., Sharma, A.K. (eds) Millet Rhizosphere . Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-99-2166-9_9

Download citation

Publish with us

Policies and ethics