Skip to main content

Deciphering the Role and Diversity of Microbes Present in Millet Rhizosphere

  • Chapter
  • First Online:
Millet Rhizosphere

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

Millets are cereal crops that are grown in tropical and subtropical regions of the world most popular in China, India, and Africa. The millet rhizosphere refers to the area in the soil surrounding millet roots, and it can be quite helpful in managing some pest problems and encouraging healthy growth. One reason it grows so well in these areas is that it can thrive in high temperatures and low humidity. This chapter outlines what we need to know about the millet rhizosphere, from its structure to its microorganisms and more. Soil biodiversity can be restored by using millet crops as their rhizosphere has a variety of microbial populations which can only be seen in the areas/soil where millet crops are grown. The rhizosphere is an area of soil that surrounds plant roots and is shaped by their biological responses. In millet crops, it has been shown that the rhizosphere influences root growth, influencing nutrient uptake and stress resistance. Several microbes have been found in millet rhizospheres, some of which are only found in this environment. This is important as it can help us understand how these microbes affect plants in terms of plant nutrition and plant health. The rhizosphere of millets is a habitat for bacteria, fungi, and other microorganisms. These organisms play an important role in soil quality through their interaction with plants. Some organisms help plants from getting resistance to various soil-borne diseases. There is not much information/research available on millet rhizosphere due to its less consumption. This chapter concentrates on the benefits of microbial populations in the millet rhizosphere and their importance with all the available information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Afridi MS et al (2022) Harnessing microbial multitrophic interactions for rhizosphere microbiome engineering. Microbiol Res 265:127199

    CAS  PubMed  Google Scholar 

  • Agarwal G, Gitaitis RD, Dutta B (2021) Pan-genome of novel Pantoea stewartii subsp. indologenes reveals genes involved in onion pathogenicity and evidence of lateral gene transfer. Microorganisms 9:1761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alegbeleye O, Odeyemi OA, Strateva M, Stratev D (2022) Microbial spoilage of vegetables, fruits and cereals. Appl Food Res:100122

    Google Scholar 

  • Alharby HF, Nahar K, Al-Zahrani HS, Hakeem KR, Hasanuzzaman M (2021) Enhancing salt tolerance in soybean by exogenous boron: intrinsic study of the ascorbate-glutathione and glyoxalase pathways. Plants 10(10):2085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ali MF, Ali U, Bilal S, Zulfiqar U, Sohail S, Hussain T (2022) Response of sorghum and millet to poultry and farmyard manure–based biochar treatments. Arabian J Geosci 15:1–12

    Google Scholar 

  • Ammar EE, Aioub AA, Elesawy AE, Karkour AM, Mouhamed MS, Amer AA, El-Shershaby NA (2022) Algae as bio-fertilizers: between current situation and future prospective. Saudi J Biol Sci 29(5):3083–3096

    PubMed  PubMed Central  Google Scholar 

  • Anas M et al (2020) Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol Res 53:1–20

    Google Scholar 

  • Arora NK, Fatima T, Mishra J, Mishra I, Verma S, Verma R, Verma M, Bhattacharya A, Verma P, Mishra P, Bharti C (2020) Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. J Adv Res 26:69–82

    Google Scholar 

  • Arun M, Vidya N, Saravanan K, Halka J, Kowsalya K, Preetha JS (2022) Plant Regeneration and transgenic approaches for the development of abiotic stress-tolerant small millets. In: Omics of climate resilient small millets. Singapore, Springer Nature Singapore, pp 141–183

    Google Scholar 

  • Ashajyothi M, Charishma K, Patel A, Paul S, Venkatesh Y, Prakash I, Tilgam J (2022) Rhizosphere microbiome: significance in sustainable crop protection. In: Rhizosphere Microbes. Springer, pp 283–309

    Google Scholar 

  • Ayangbenro AS, Babalola OO (2021) Reclamation of arid and semi-arid soils: The role of plant growth-promoting archaea and bacteria. Curr Plant Biol 25:100173

    CAS  Google Scholar 

  • Banerjee S, van der Heijden MG (2022) Soil microbiomes and one health. Nat Rev Microbiol:1–15

    Google Scholar 

  • Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on Earth. Proc Natl Acad Sci 115:6506–6511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bettiol ACT, Braos LB, Lopes IG, Andriolli I, Ferreira ME, da Cruz MCP (2022) Evaluation of potentially available nitrogen by biological and chemical methods in soil cultivated with maize in succession to cover crops. J Plant Nutr 45(13):1919–1932. https://doi.org/10.1080/01904167.2022.2044488

    Article  CAS  Google Scholar 

  • Bhatt K, Suyal D, Kumar S, Singh K, Goswami P (2022) New insights into engineered plant-microbe interactions for pesticide removal. Chemosphere 136635

    Google Scholar 

  • Borah P, Gogoi N, Asad SA, Rabha AJ, Farooq M (2023) An insight into plant growth-promoting rhizobacteria-mediated mitigation of stresses in plant. J Plant Growth Regul 42(5):3229–3256

    CAS  Google Scholar 

  • Bramel‐Cox PJ, Claflin LE (1989) Selection for resistance to Macrophomina phaseolina and Fusarium moniliforme in sorghum. Crop Sci 29(6):1468–1472

    Google Scholar 

  • van der Bom FJ, Kopittke PM, Raymond NS, Sekine R, Lombi E, Mueller CW, Doolette CL (2022) Methods for assessing laterally-resolved distribution, speciation and bioavailability of phosphorus in soils. Rev Environ Sci Bio/Technol 21:1–22

    Google Scholar 

  • Börjesson G, Kirchmann H (2022) Interactive long-term effects of liming and P application on clay soil: crop yield increases up to pH 7.5 (aq). Plant Soil 473:407–421

    Google Scholar 

  • Butterly CR, Amado TJC, Tang C (2022) Soil acidity and acidification. In: Subsoil constraints for crop production. Springer, pp 53–81

    Google Scholar 

  • Chandrasekara A, Shahidi F (2022) Minor millet processing and its impacts on composition. In: Handbook of millets-processing, quality, and nutrition status. Springer, pp 81–101

    Google Scholar 

  • Chanwala J, Jha DK, Sandeep IS, Dey N (2022) The role of transcription factors in response to biotic stresses in pearl millet. In: Transcription factors for biotic stress tolerance in plants. Springer, pp 195-211

    Google Scholar 

  • Chakrabarty SK, Girish GA, Anitha K, Thakur RP (2011) Eliminating smut (Moesziomyces penicillariae) from pearl millet seeds under transboundary movement. Indian J Plant Genet Resour 24(3):340–342

    Google Scholar 

  • Crouch JA, Davis WJ, Shishkoff N, Castroagudín VL, Martin F, Michelmore R, Thines M (2022) Peronosporaceae species causing downy mildew diseases of Poaceae, including nomenclature revisions and diagnostic resources. Fungal Syst Evol 9(1):43–86

    CAS  PubMed  PubMed Central  Google Scholar 

  • Debnath S, Das N, Maheshwari DK, Pandey P (2022) Interactions of rhizobia with nonleguminous plants: a molecular ecology perspective for enhanced plant growth. In: Nitrogen fixing bacteria: sustainable growth of non-legumes. Springer, pp 23–64

    Google Scholar 

  • Dong Y, Yang J-L, Zhao X-R, Yang S-H, Mulder J, Dörsch P, Zhang G-L (2022) Seasonal dynamics of soil pH and N transformation as affected by N fertilization in subtropical China: an in situ 15N labeling study. Sci Total Environ 816:151596

    CAS  PubMed  Google Scholar 

  • Dutilloy E, Oni FE, Esmaeel Q, Clément C, Barka EA (2022) Plant beneficial bacteria as bioprotectants against wheat and barley diseases. J Fungi 8:632

    CAS  Google Scholar 

  • Emami-Karvani Z, Chitsaz-Esfahani Z (2021) Phosphorus solubilization: mechanisms, recent advancement and future challenge. In: Soil microbiomes for sustainable agriculture. Springer, pp 85–131

    Google Scholar 

  • Estabrook EM, Yoder JI (1998) Plant-plant communications: rhizosphere signaling between parasitic angiosperms and their hosts. Plant Physiol 116:1–7

    CAS  PubMed Central  Google Scholar 

  • Etesami H, Adl SM (2020) Plant growth-promoting rhizobacteria (PGPR) and their action mechanisms in availability of nutrients to plants. Phyto-Microbiome Stress Regul:147–203

    Google Scholar 

  • Fadiji AE, Santoyo G, Yadav AN, Babalola OO (2022) Efforts towards overcoming drought stress in crops: Revisiting the mechanisms employed by plant growth-promoting bacteria. Front Microbiol:13, 962427

    Google Scholar 

  • Gahukar RT, Reddy GV (2019) Management of economically important insect pests of millet. J Integr Pest Manag 10:28

    Google Scholar 

  • Gao J-l et al (2022) Characterization of an endophytic antagonistic bacterial strain Bacillus halotolerans Lbg-1-13 with multiple plant growth-promoting traits, stress tolerance, and its effects on lily growth. Biomed Res Int 2022

    Google Scholar 

  • Garcia-Gonzalez J, Mehl HL, Langston DB, Rideout SL (2022) Planting date and cultivar selection to manage southern blight in potatoes in the mid-Atlantic United States. Crop Prot 162:106077

    Google Scholar 

  • Geng N et al (2022) Biochar mitigation of soil acidification and carbon sequestration is influenced by materials and temperature. Ecotoxicol Environ Saf 232:113241

    CAS  PubMed  Google Scholar 

  • Goswami M, Deka S (2022) Rhizodeposits: an essential component for microbial interactions in rhizosphere. In Re-visiting the rhizosphere eco-system for agricultural sustainability. Springer, pp 129–151

    Google Scholar 

  • Gupta G et al (2022) Exploring functional diversity and community structure of diazotrophic endophytic bacteria associated with pennisetum glaucum growing under field in a semi-arid region. Land 11:991

    Google Scholar 

  • Gurung SA, Rai AK, Sunar K, Das K (2023) Plant–Endophyte Interactions: a driving phenomenon for boosting plant health under climate change conditions. In: Microbial symbionts and plant health: trends and applications for changing climate. Singapore, Springer Nature Singapore, pp 233–263

    Google Scholar 

  • Halim MA, Rahman MM, Megharaj M, Naidu R (2020) Cadmium immobilization in the rhizosphere and plant cellular detoxification: role of plant-growth-promoting rhizobacteria as a sustainable solution. J Agric Food Chem 68(47):13497–13529

    CAS  PubMed  Google Scholar 

  • Haq SI, Zheng D, Feng N, Jiang X, Qiao F, He JS, Qiu QS (2022) Progresses of CRISPR/Cas9 genome editing in forage crops. J Plant Physiol 8:153860

    Google Scholar 

  • Hasanuzzaman M, Parvin K, Bardhan K, Nahar K, Anee TI, Masud AA, Fotopoulos V (2021) Biostimulants for the regulation of reactive oxygen species metabolism in plants under abiotic stress. Cells 10(10):2537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Google Scholar 

  • Heve WK, El-Borai FE, Carrillo D, Duncan LW (2018) Increasing entomopathogenic nematode biodiversity reduces efficacy against the Caribbean fruit fly Anastrepha suspensa: interaction with the parasitoid Diachasmimorpha longicaudata. J Pest Sci 91:799–813

    Google Scholar 

  • Huang W-T et al (2022) Adaptive responses of carbon and nitrogen metabolisms to nitrogen-deficiency in Citrus sinensis seedlings. BMC Plant Biol 22:1–19

    CAS  Google Scholar 

  • Hussain I et al (2022) Effect of metals or trace elements on wheat growth and its remediation in contaminated soil. J Plant Growth Regul:1–25

    Google Scholar 

  • Jain AK (2009) Nematode pests of small millets–a review. Agric Rev 30(2):132–138

    Google Scholar 

  • Jamra G, Shah P, Agarwal A, Sharma D, Kumar A (2021) Endogenous phytonutrient, phytochemical, and phytohormone levels modulate in-vitro callus induction and plant regeneration in finger millet (Eleusine coracana) genotypes. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, pp 1–10

    Google Scholar 

  • Kelly C et al (2022) Divergent belowground carbon allocation patterns of winter wheat shape rhizosphere microbial communities and nitrogen cycling activities. Soil Biol Biochem 165:108518

    CAS  Google Scholar 

  • Khan N, Bano AM, Babar A (2020) Impacts of plant growth promoters and plant growth regulators on rainfed agriculture. PloS one 15(4):e0231426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan Y, Shah S, Tian H (2022) The roles of arbuscular mycorrhizal fungi in influencing plant nutrients, photosynthesis, and metabolites of cereal crops—a review. Agronomy 12:2191

    CAS  Google Scholar 

  • Kumar KK, Dara SK (2021) Fungal and bacterial endophytes as microbial control agents for plant-parasitic nematodes. Int J Environ Res Public Health 18(8):4269

    PubMed  PubMed Central  Google Scholar 

  • Kumar M, Ram D, Khandelwal V, Choudhary A, Saran MK, Yadav AL (2022) Screening of different pearl millet (Pennisetum glaucum) genotype against blast disease of pearl millet caused by Pyricularia grisea (Cooke) Sacc. Crop Res 57(5and6):442–446

    Google Scholar 

  • Kumar S, Thirunavookarasu N, Sunil C, Rawson A (2022) By-products from millet processing industry. In Handbook of millets-processing, quality, and nutrition status. Springer, pp 301–314

    Google Scholar 

  • Kumari P, Godika S, Ghasolia RP, Goyal SK, Khan I, Deora A, Meena S, Kumar S, Kumar S, Kumar L (2022) Validation of stable resistance in pearl millet hybrids to ergot disease caused by Claviceps fusiformis. Pharma Innov J SP-11(2):872–874

    Google Scholar 

  • Lahlali R, Ezrari S, Radouane N, Kenfaoui J, Esmaeel Q, El Hamss H, Belabess Z, Barka EA (2022) Biological control of plant pathogens: A global perspective. Microorganisms 10(3):596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lavanya SN, Niranjan-Raj S, Jadimurthy R, Sudarsan S, Srivastava R, Tarasatyavati C, Rajashekara H, Gupta VK, Nayaka SC (2022) Immunity elicitors for induced resistance against the downy mildew pathogen in pearl millet. Sci Rep 12(1):4078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang G (2022) Nitrogen fertilization mitigates global food insecurity by increasing cereal yield and its stability Global. Food Security 34:100652

    Google Scholar 

  • Lidbury ID et al (2022) Stimulation of distinct rhizosphere bacteria drives phosphorus and nitrogen mineralization in oilseed rape under field conditions. Msystems 7:e00025–e00022

    PubMed  PubMed Central  Google Scholar 

  • Liu J, Wang Q, Ku Y, Zhang W, Zhu H, Zhao Z (2022) Precipitation and soil pH drive the soil microbial spatial patterns in the Robinia pseudoacacia forests at the regional scale. Catena 212:106120

    CAS  Google Scholar 

  • Luttrell ES (1954) Diseases of pearl millet in georgia. Plant Dis Rep 38(7)

    Google Scholar 

  • Madejón P, Caro-Moreno D, Navarro-Fernández CM, Rossini-Oliva S, Marañón T (2021) Rehabilitation of waste rock piles: impact of acid drainage on potential toxicity by trace elements in plants and soil. J Environ Manag 280:111848

    Google Scholar 

  • Mageshwaran V, Gupta R, Sahu PK, Tripathi P, Vishwakarma R (2022) Potential of bacterial endophytes in biological control of soil-borne phytopathogens. In Rhizosphere Microbes. Springer, pp 153–173

    Google Scholar 

  • Maheshwari DK, Dheeman S, Agarwal M (2015) Phytohormone-producing PGPR for sustainable agriculture. In: Bacterial metabolites in sustainable agroecosystem, pp 159–182

    Google Scholar 

  • Mangandi JA, Seijo TE, Peres NA (2007) First report of Myrothecium roridum causing myrothecium leaf spot on Salvia spp. in the United States. Plant Dis 91(6):772

    CAS  PubMed  Google Scholar 

  • Maithani D, Sharma A, Gangola S, Bhatt P, Bhandari G, Dasila H (2022) Barnyard millet (Echinochloa spp.): a climate resilient multipurpose crop. Vegetos, pp 1–15

    Google Scholar 

  • Maitra D, Roy B, Chandra A, Choudhury SS, Mitra AK (2022) Biofilm producing Bacillus vallismortis TR01K from tea rhizosphere acting as plant growth promoting agent. Biocatal Agric Biotechnol 45:102507

    CAS  Google Scholar 

  • Manyasi J, Kimurto P, Mafurah J (2022) Genetic resistance to blast disease in finger millet genotypes under greenhouse conditions. East Afr Agric Forestry J 86:10–10

    Google Scholar 

  • Manzar N, Kashyap AS, Maurya A, Rajawat MV, Sharma PK, Srivastava AK, Roy M, Saxena AK, Singh HV (2022) Multi-Gene phylogenetic approach for identification and diversity analysis of Bipolaris maydis and Curvularia lunata isolates causing Foliar Blight of Zea mays. J Fungi 8(8):802

    CAS  Google Scholar 

  • Maroušek J, Trakal L (2022) Techno-economic analysis reveals the untapped potential of wood biochar. Chemosphere 291:133000

    PubMed  Google Scholar 

  • Mbinda W, Kavoo A, Maina F, Odeph M, Mweu C, Nzilani N, Ngugi M (2021) Farmers’ knowledge and perception of finger millet blast disease and its control practices in western Kenya. CABI Agric Biosci 2:1–12

    Google Scholar 

  • Meenambal R, Hema SK, Tomar V, Puyam A (2022) Probe into DNA interaction, cell toxicity and antifungal activities of phytosynthesized yttrium oxide (Y2O3) nanoparticles. In: IOP Conf Ser Mater Sci Eng 1225(1):012044. IOP Publishing

    Google Scholar 

  • Mondal S, Pramanik K, Ghosh SK, Pal P, Ghosh PK, Ghosh A, Maiti TK (2022) Molecular insight into arsenic uptake, transport, phytotoxicity, and defense responses in plants: a critical review. Planta 255:1–37

    Google Scholar 

  • Muleya M, Young SD, Broadley MR, Joy EJ, Chopera P, Bailey EH (2023) Bioaccessibility of iron in pearl millet flour contaminated with different soil types. Food Chem 402:134277

    CAS  PubMed  Google Scholar 

  • Murakami T, Katsuragi Y, Hirai H, Wataya K, Kondo M, Che FS (2022) Distribution of flagellin CD2-1, flg22, and flgII-28 recognition systems in plant species and regulation of plant immune responses through these recognition systems. Biosci Biotechnol Biochem 86(4):490–501

    PubMed  Google Scholar 

  • Mythili M, Ramalakshmi A (2022) Unraveling the distribution of AMF communities and their metabolites associated with soils of minor millets. Rhizosphere 21:100473

    Google Scholar 

  • Nagaraja A, Suresh P, Chetana BS, Laxmi R (2017) Prevalence of cercospora leaf spot (CLS) in the mid hills of Uttarakhand (India). J Mycol Res 54(4):547–549

    Google Scholar 

  • Nandhini M, Udayashankar A, Jogaiah S, Prakash H (2020) Unraveling the potentials of endophytes and its applications. In: Fungal biotechnology and bioengineering. Springer, pp 331–348

    Google Scholar 

  • Naorem A, Jayaraman S, Dalal RC, Patra A, Rao CS, Lal R (2022) Soil inorganic carbon as a potential sink in carbon storage in dryland soils—a review. Agriculture 12:1256

    CAS  Google Scholar 

  • Narasimhamurthy K et al (2022) Chitosan and chitosan-derived nanoparticles modulate enhanced immune response in tomato against bacterial wilt disease. Int J Biol Macromol 220:223–237

    CAS  PubMed  Google Scholar 

  • Navale V, Penugonda S, Vamkudoth KR (2022) Prevalence of zearalenone producing Fusarium species associated with finger millet. Indian Phytopathol 75(2):367–375

    Google Scholar 

  • Nawaz F, Shehzad MA, Majeed S, Ahmad KS, Aqib M, Usmani MM, Shabbir RN (2020) Role of mineral nutrition in improving drought and salinity tolerance in field crops. In: Agronomic crops. Springer, pp 129–147

    Google Scholar 

  • Nerling D et al. (2022) Effect of volatile organic compounds (VOCs) and secondary metabolites produced by plant growth-promoting rhizobacteria (PGPR) on seed quality. In: Secondary metabolites and volatiles of PGPR in plant-growth promotion. Springer, pp 59–75

    Google Scholar 

  • Noman M, Ahmed T, Ijaz U, Shahid M, Li D, Manzoor I, Song F (2021) Plant–Microbiome crosstalk: dawning from composition and assembly of microbial community to improvement of disease resilience in plants. Int J Mol Sci 22:6852

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nzabanita C et al (2022) Fungal endophyte Epicoccum nigrum 38L1 inhibits in vitro and in vivo the pathogenic fungus Fusarium graminearum. Biol Control 174:105010

    CAS  Google Scholar 

  • Pal G, Kumar K, Verma A, Verma SK (2022) From rhizosphere to endosphere: bacterial-plant symbiosis and its impact on sustainable agriculture. In: Re-visiting the rhizosphere eco-system for agricultural sustainability. Springer, pp 89–103

    Google Scholar 

  • Panchal A, Singh RK, Prasad M (2022) Recent advancements and future perspectives of foxtail millet genomics. Plant Growth Regul 99:11–23

    Google Scholar 

  • Pantigoso HA, Newberger D, Vivanco JM (2022) The rhizosphere microbiome: plant–microbial interactions for resource acquisition. J Appl Microbiol 133(5):2864–2876

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parmagnani AS, Maffei ME (2022) Calcium signaling in plant-insect interactions. Plants 11:2689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel KB, Thakker JN (2021) Deliberating plant growth promoting and mineral-weathering proficiency of streptomyces nanhaiensis strain YM4 for nutritional benefit of millet crop (Pennisetum glaucum). J Microbiol Biotechnol Food Sci 2021:721–726

    Google Scholar 

  • Pati D, Kesh R, Mohanta V, Pudake RN, Sevanthi AM, Sahu BB (2022) Genome-editing approaches for abiotic stress tolerance in small millets. In: Omics of climate resilient small millets. Springer, pp 259–273

    Google Scholar 

  • Patwardhan SB et al (2022) Illuminating the signalomics of microbial biofilm on plant surfaces. Biocatal Agric Biotechnol 47:102537

    Google Scholar 

  • Poveda J, Abril-Urias P, Escobar C (2020) Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Front Microbiol 11:992

    PubMed  PubMed Central  Google Scholar 

  • Prabha R, Singh DP, Gupta S, Gupta VK, El-Enshasy HA, Verma MK (2019) Rhizosphere metagenomics of Paspalum scrobiculatum l. (kodo millet) reveals rhizobiome multifunctionalities. Microorganisms 7:608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad P, Djanaguiraman M, Stewart Z, Ciampitti I (2020) Agroclimatology of maize, sorghum, and pearl millet. In Agroclimatology: linking agriculture to climate, Vol 60, pp 201–241

    Google Scholar 

  • Qhobela M, Claflin LE (1998) Characterization of Xanthomonas campestris pv. pennamericanum pv. nov., causal agent of bacterial leaf streak of pearl millet. Int J Syst Bacteriol 38(4):362–366

    Google Scholar 

  • Rana S, Pramitha L, Muthamilarasan M (2021) Genomic designing for abiotic stress tolerance in foxtail millet (Setaria Italica L.). In: Genomic designing for abiotic stress resistant cereal crops. Springer, pp 255–289

    Google Scholar 

  • Rao G, Reddy MG (2020) Overview of yield losses due to plant viruses. In: Applied plant virology. Elsevier, pp 531–562

    Google Scholar 

  • Rathnathilaka T, Premarathna M, Madawala S, Pathirana A, Karunaratne K, Seneviratne G (2022) Biofilm biofertilizer application rapidly increases soil quality and grain yield in large scale conventional rice cultivation: a case study. J Plant Nutr 46:1–11

    Google Scholar 

  • Rengasamy P, de Lacerda CF, Gheyi HR (2022) Salinity, sodicity and alkalinity. In: Subsoil constraints for crop production. Springer, pp 83–107

    Google Scholar 

  • Saeed Q et al (2021) Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: a comprehensive review of effects and mechanisms. Int J Mol Sci 22:10529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saleem S, Khan ST (2022) Development of microbes-based biofertilizer for zinc dissolution in soil. In Microbial biofertilizers and micronutrient availability. Springer, pp 299–329

    Google Scholar 

  • Saleem S, Mushtaq NU, Rasool A, Shah WH, Tahir I, Rehman RU (2023) Plant nutrition and soil fertility: physiological and molecular avenues for crop improvement. In Sustainable plant nutrition. Elsevier, pp 23–49

    Google Scholar 

  • Salvi P, Manna M, Kaur H, Thakur T, Gandass N, Bhatt D, Muthamilarasan M (2021) Phytohormone signaling and crosstalk in regulating drought stress response in plants. Plant Cell Rep 40:1305–1329

    CAS  PubMed  Google Scholar 

  • Sau AK, Rajesh, Dhillon MK (2022) Aspects of host plant resistance with reference to Sesamia inferens (Walker): a review. Pharm Anal Acta 11(2):1006–1010

    Google Scholar 

  • Schloter M, Dilly O, Munch J (2003) Indicators for evaluating soil quality. Agric Ecosyst Environ 98:255–262

    Google Scholar 

  • Schütz L, Saharan K, Mäder P, Boller T, Mathimaran N (2022) Rate of hyphal spread of arbuscular mycorrhizal fungi from pigeon pea to finger millet and their contribution to plant growth and nutrient uptake in experimental microcosms. Appl Soil Ecol 169:104156

    Google Scholar 

  • Serri DL, Pérez-Brandan C, Meriles JM, Salvagiotti F, Bacigaluppo S, Malmantile A, Vargas-Gil S (2022) Development of a soil quality index for sequences with different levels of land occupation using soil chemical, physical and microbiological properties. Appl Soil Ecol 180:104621

    Google Scholar 

  • Shultana R et al (2022) The PGPR mechanisms of salt stress adaptation and plant growth promotion. Agronomy 12:2266

    CAS  Google Scholar 

  • Silva YF et al (2022) Intense pasture management in Brazil in an integrated crop-livestock system simulated by the DayCent Model. Sustainability 14:3517

    CAS  Google Scholar 

  • Singh G, Kanwar RS (2019) Studies on resistance in some pearl Millet hybrids against Meloidogyne graminicola. J Pharmacognosy Phytochemistry 8(5):1513–1515

    Google Scholar 

  • Singh M, Nara U (2023) Genetic insights in pearl millet breeding in the genomic era: challenges and prospects. Plant Biotechnol Rep 17(1):15–37

    PubMed  Google Scholar 

  • Ssango F, Speijer PR, Coyne DL, De Waele D (2004) Path analysis: a novel approach to determine the contribution of nematode damage to East African Highland banana (Musa spp., AAA) yield loss under two crop management practices in Uganda. Field Crops Res 90(2–3):177–187

    Google Scholar 

  • Stefen DLV, Nunes FR, Rodolfo GR, Segatto C, Anastácio TC, Lajus CR (2022) How phytohormones synthesized by PGPR affect plant growth? In: Secondary metabolites and volatiles of PGPR in plant-growth promotion. Springer, pp 119–131

    Google Scholar 

  • Subedi P, Gattoni K, Liu W, Lawrence KS, Park S-W (2020) Current utility of plant growth-promoting rhizobacteria as biological control agents towards plant-parasitic nematodes. Plants 9:1167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takio N, Yadav M, Yadav HS (2021) Catalase-mediated remediation of environmental pollutants and potential application—a review. Biocatal Biotransform 39:389–407

    CAS  Google Scholar 

  • Tarafdar J (2022) Role of soil biology on soil health for sustainable agricultural production. In Structure and functions of pedosphere. Springer, pp 67–81

    Google Scholar 

  • Tavares TCL (2022) Getting by anthropocene with a little help from microbes. Arquivos de Ciências do Mar 55:87–101

    Google Scholar 

  • Thankappan S, Narayanasamy S, Sridharan A, Binodh A, Kumari AN, Parasuraman P, Uthandi S (2022) Rhizospheric volatilome in modulating induced systemic resistance against biotic stress: a new paradigm for future food security. Physiol Mol Plant Pathol 126:101852

    Google Scholar 

  • Tian L, Chen P, Gao Z, Gao X, Feng B (2022) Deciphering the distinct mechanisms shaping the broomcorn millet rhizosphere bacterial and fungal communities in a typical agricultural ecosystem of Northern China. Plant Soil:1–16

    Google Scholar 

  • Tyagi S, Reddy K, Haniya K, Swarnalakshmi K, Senthilkumar M, Kumar U, Annapurna K (2022) Harnessing cereal–rhizobial interactions for plant growth promotion and sustainable crop production. In Nitrogen fixing bacteria: sustainable growth of non-legumes. Springer, pp 277–298

    Google Scholar 

  • Umapathi M, Chandrasekhar C, Senthil A, Kalaiselvi T, Santhi R, Ravikesavan R (2022) Isolation, characterization and plant growth-promoting effects of sorghum [Sorghum bicolor (L.) moench] root-associated rhizobacteria and their potential role in drought mitigation. Arch Microbiol 204:1–14

    Google Scholar 

  • Vaccaro F, Cangioli L, Mengoni A, Fagorzi C (2022) Synthetic plant microbiota challenges in nonmodel species. Trends Microbiol 30(10):922–924. https://doi.org/10.1016/j.tim.2022.06.006. Epub 2022 Jul 15.

    Article  CAS  PubMed  Google Scholar 

  • Vandana UK et al (2021) The endophytic microbiome as a hotspot of synergistic interactions, with prospects of plant growth promotion. Biology 10:101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Velásquez AC, Castroverde CDM, He SY (2018) Plant–pathogen warfare under changing climate conditions. Curr Biol 28:R619–R634

    PubMed  PubMed Central  Google Scholar 

  • Wafula WN, Korir NK, Ojulong HF, Siambi M, Gweyi-Onyango JP (2016) Phosphorus influence on plant tissue nitrogen contents and yield attributes of finger millet varieties in semi-arid region of Kenya. Int J Plant Soil Sci 13:1–9

    Google Scholar 

  • Wahab A et al (2022) Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: a comprehensive review. Plants 11:1620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Wang Q, Yuan Z, Wu X (2022) Organochlorine pesticides in riparian soils and sediments of the middle reach of the Huaihe River: a traditional agricultural area in China. Chemosphere 296:134020

    CAS  PubMed  Google Scholar 

  • White JF, Kingsley KL, Verma SK, Kowalski KP (2018) Rhizophagy cycle: an oxidative process in plants for nutrient extraction from symbiotic microbes. Microorganisms 6(3):95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu B, Luo S, Luo H, Huang H, Xu F, Feng S, Xu H (2022) Improved phytoremediation of heavy metal contaminated soils by Miscanthus floridulus under a varied rhizosphere ecological characteristic. Sci Total Environ 808:151995

    CAS  PubMed  Google Scholar 

  • Yaashikaa P, Kumar PS, Jeevanantham S, Saravanan R (2022) A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environ Pollut 301:119035

    CAS  PubMed  Google Scholar 

  • Yadav DS, Jaiswal B, Gautam M, Agrawal M (2020) Soil acidification and its impact on plants. In Plant responses to soil pollution. Springer, pp 1–26

    Google Scholar 

  • Ye C, Huang W, Hall SJ, Hu S (2022) Association of organic carbon with reactive iron oxides driven by soil ph at the global scale. Global Biogeochem Cycles 36:e2021GB007128

    CAS  Google Scholar 

  • Younas N, Fatima I, Ahmad IA, Ayyaz MK (2022) Alleviation of zinc deficiency in plants and humans through an effective technique; biofortification: a detailed review. Acta Ecologica Sinica 43:419–425

    Google Scholar 

  • Yu Y, Gui Y, Li Z, Jiang C, Guo J, Niu D (2022) Induced systemic resistance for improving plant immunity by beneficial microbes. Plants 11:386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao S et al (2022) A precision compost strategy aligning composts and application methods with target crops and growth environments can increase global food production. Nature Food 3:741–752

    CAS  PubMed  Google Scholar 

  • Zhou Y, Ma J, Yang J, Lv Z, Song Z, Han H (2023) Soybean rhizosphere microorganisms alleviate Mo nanomaterials induced stress by improving soil microbial community structure. Chemosphere 310:136784

    CAS  PubMed  Google Scholar 

  • Zhu L, He J, Tian Y, Li X, Li Y, Wang F, Qin K, Wang J (2022) Intercropping Wolfberry with Gramineae plants improves productivity and soil quality. Sci Hortic 292:110632

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kotra, V., Singh, M., Kumar, C., Pandey, S. (2023). Deciphering the Role and Diversity of Microbes Present in Millet Rhizosphere. In: Pudake, R.N., Kumari, M., Sapkal, D.R., Sharma, A.K. (eds) Millet Rhizosphere . Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-99-2166-9_8

Download citation

Publish with us

Policies and ethics