Skip to main content

Comparison of Rhizospheric Functional Diversity Between Chemically Fertilized and Bioinoculated Millet

  • Chapter
  • First Online:
Millet Rhizosphere

Abstract

Millets are ancient nutritious grains widely used as food and fodder. Millets grow well in most climates and easily yield sufficiently even on nutrient-deficient soils and rain-fed conditions with no chemical inputs. They have been used in intercropping and mixed cropping practices. However, little is known about the rhizosphere-microbe interactions and the type of microbial abundance in the soils of millets. The rhizosphere is a unique niche, where diverse microbes and macroorganisms thrive under the influences of plant roots and in turn are affected by climatic and anthropogenic influences. While chemical fertilizers helped achieve faster growth and yields during the mass famine, continuous and excessive fertilizers create a hazardous environment and thus diminishing soil health, in turn affecting microbial diversity in the plant rhizosphere. Diminishing microbial diversity in the soil in turn affects soil properties, biogeochemical cycles, and reduction in soil flora, leading to nutrient imbalances. Biological solutions such as bioinoculants serve as alternate and sustainable methods in order to engineer the agroecosystems to enhance crop yields and benefit the environment. This chapter highlights and compares the functional microbial diversity between chemically treated and bioinoculated millets. We also discuss future prospects for sustainable methods in order to improve microbial diversity and hence, food security despite climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antony Ceasar S, Maharajan T (2022) The role of millets in attaining United Nation’s sustainable developmental goals. Plants People Planet 4:345–349. https://doi.org/10.1002/ppp3.10254

    Article  Google Scholar 

  • Bama M, Ramakrishnan K (2010) Effects of combined inoculation of Azospirillum and AM fungi on the growth and yield of finger millet (Eleusine coracana Gaertn) Var. Co 12. J Exp Sci 1:10–11

    Google Scholar 

  • Bidinger FR, Hash CT (2004) Pearl millet. In Physiology and biotechnology integration for plant breeding. CRC Press, pp 205–242

    Google Scholar 

  • Black M, Moolhuijzen P, Chapman B et al (2012) The genetics of symbiotic nitrogen fixation: Comparative genomics of 14 rhizobia strains by resolution of protein clusters. Genes (Basel) 3:138–166. https://doi.org/10.3390/genes3010138

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Wang J, Liu S et al (2022) Effect of different fertilizers on the bacterial community diversity in rhizosperic soil of broomcorn millet (Panicum miliaceum L.). Arch Agron Soil Sci 68:676–687. https://doi.org/10.1080/03650340.2020.1849625

    Article  CAS  Google Scholar 

  • Caruso C, Maucieri C, Berruti A et al (2018) Responses of different Panicum miliaceum L. genotypes to saline and water stress in a marginal mediterranean environment. Agronomy 8:8. https://doi.org/10.3390/agronomy8010008

    Article  CAS  Google Scholar 

  • Ceasar S, Ignacimuthu S (2008) Efficient somatic embryogenesis and plant regeneration from shoot apex explants of different Indian genotypes of finger millet (Eleusine coracana (L.) Gaertn.). In Vitro Cell Dev Biol Plant 44:427–435. https://doi.org/10.1007/s11627-008-9153-y

    Article  CAS  Google Scholar 

  • Chandra AK, Chandora R, Sood S, Malhotra N (2021) Global production, demand, and supply. In: Millets and pseudo cereals. Elsevier, pp 7–18

    Google Scholar 

  • Chen WB, Chen BM, Liao HX et al (2019) Leaf leachates have the potential to influence soil nitrification via changes in ammonia-oxidizing archaea and bacteria populations. Eur J Soil Sci ejss.12844. https://doi.org/10.1111/ejss.12844

  • Choudhari MK, Tiwari RK, Mishra RM, Namdeo KN (2018) Integrated nutrient management on growth, yield and economics of kodo millet (Paspalum scrobiculatum L.). Ann Plant Soil Res 20.4:405–408

    Google Scholar 

  • Devi R, Kaur T, Kour D, Yadav AN (2022) Microbial consortium of mineral solubilizing and nitrogen fixing bacteria for plant growth promotion of amaranth (Amaranthus hypochondrius L.). Biocatalysis and Agricultural. Biotechnology 43:102404. https://doi.org/10.1016/j.bcab.2022.102404

    Article  CAS  Google Scholar 

  • Dwivedi BS, Rawat AK, Dixit BK, Thakur RK (2016) Effect of inputs integration on yield, uptake and economics of Kodo Millet (Paspalum scrobiculatum L.). Econ Affairs 61:519. https://doi.org/10.5958/0976-4666.2016.00065.6

    Article  Google Scholar 

  • Faiz MA, Bana RS, Choudhary AK et al (2022) Zero tillage, residue retention and system-intensification with legumes for enhanced pearl millet productivity and mineral biofortification. Sustainability 14:543. https://doi.org/10.3390/su14010543

    Article  CAS  Google Scholar 

  • Govindappa M, Vishwanath A, Harsha K (2009) Response of finger millet (Eluesine coracana L.) to organic and inorganic sources of nutrients under rainfed conditions. J Crop Weed 5(1):291–293

    Google Scholar 

  • Greening C, Biswas A, Carere CR et al (2016) Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J 10:761–777. https://doi.org/10.1038/ismej.2015.153

    Article  CAS  PubMed  Google Scholar 

  • Gregory PJ, Reddy MS (1982) Root growth in an intercrop of pearl millet/groundnut. Field Crops Res 5:241–252. https://doi.org/10.1016/0378-4290(82)90027-2

    Article  Google Scholar 

  • Gupta RK, Verma KK, Singh KP (2011) Influence of bio-chemical fertilizers on growth and yield of Finger millet (Eleusine coracana L.). Pantngar J Res 9:96–102

    Google Scholar 

  • Hassan ZM, Sebola NA, Mabelebele M (2020) Evaluating the physical and chemical contents of millets obtained from South Africa and Zimbabwe. CyTA J Food 18:662–669. https://doi.org/10.1080/19476337.2020.1818831

    Article  CAS  Google Scholar 

  • Hema R, Vemanna RS, Sreeramulu S et al (2014) Stable expression of mtlD gene imparts multiple stress tolerance in finger millet. PLoS One 9:e99110. https://doi.org/10.1371/journal.pone.0099110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirooka Y, Awala SK, Hove K et al (2021) Effects of cultivation management on pearl millet yield and growth differed with rainfall conditions in a seasonal wetland of Sub-Saharan Africa. Agronomy 11:1767

    Article  CAS  Google Scholar 

  • Hobbs PR, Sayre K, Gupta R (2008) The role of conservation agriculture in sustainable agriculture. Philos Trans Roy Soc B Biol Sci 363:543–555. https://doi.org/10.1098/rstb.2007.2169

    Article  Google Scholar 

  • Kaul H-P, Kruse M, Aufhammer W (2005) Yield and nitrogen utilization efficiency of the pseudocereals amaranth, quinoa, and buckwheat under differing nitrogen fertilization. Eur J Agron 22:95–100. https://doi.org/10.1016/j.eja.2003.11.002

    Article  CAS  Google Scholar 

  • Khatri D, Durgapal A, Joshi PK (2016) Biofertilization enhances productivity and nutrient uptake of foxtail millet plants. J Crop Improvement 30:32–46

    Article  Google Scholar 

  • Kumar D, Dutt S, Raigond P, Changan SS, Lal MK, Tiwari RK, Chourasia KN, Singh B (2021) Different biofertilizers and their application for sustainable development. In: Microbial technology for sustainable environment, pp 31–48

    Chapter  Google Scholar 

  • Latake SB, Shinde DB, Bhosale DM (2009) Effect of inoculation of beneficial microorganisms on growth and yield of pearl millet. Indian J Agric Res 43(1):61–64

    Google Scholar 

  • Lavecchia A, Curci M, Jangid K et al (2015) Microbial 16S gene-based composition of a sorghum cropped rhizosphere soil under different fertilization managements. Biol Fertil Soils 51:661–672. https://doi.org/10.1007/s00374-015-1017-0

    Article  CAS  Google Scholar 

  • Liu C, Gong X, Dang K et al (2020) Linkages between nutrient ratio and the microbial community in rhizosphere soil following fertilizer management. Environ Res 184:109261. https://doi.org/10.1016/j.envres.2020.109261

    Article  CAS  PubMed  Google Scholar 

  • Maitra S (2020) Intercropping of small millets for agricultural sustainability in drylands: a review. Crop Res 55(3–4):162–171. https://doi.org/10.31830/2454-1761.2020.025

    Article  Google Scholar 

  • Malleshi NG, Hadimani NA (1993) Nutritional and technological characteristics of small millets and preparation of value-added products from them. Advances in small millets, pp 270–287

    Google Scholar 

  • Mareque C, da Silva TF, Vollú RE et al (2018) The endophytic bacterial microbiota associated with sweet sorghum (Sorghum bicolor) is modulated by the application of chemical fertilizer to the field. Int J Genomics 2018:1–10. https://doi.org/10.1155/2018/7403670

    Article  CAS  Google Scholar 

  • Mattoo R, Gowda M (2022) Harnessing soil bacteria and their benefits for sustainable agriculture with changing climate. CAB Rev 17(002). https://doi.org/10.1079/cabireviews202217002

  • Mattoo R, Umashankar N, Raveendra HR (2021) Contrasting rhizosphere microbial communities between fertilized and bio-inoculated millet. Rhizosphere 17:100273. https://doi.org/10.1016/j.rhisph.2020.100273

    Article  Google Scholar 

  • Mourya A, Singh S (2022) Effect of Bio-fertilizers and plant growth regulators on growth and yield of Pearl millet (Pennisetum glaucum L.). Pharma Innov J 11:1791–1794

    CAS  Google Scholar 

  • Ndirmbula GM, Yahaya IH, Sanusi M (2022) Response of pearl millet Pennisetum typhoides (Burm F.) to different fertilizer applications under field conditions. Asian J Res Bot 7(3):17–25

    Google Scholar 

  • Pahalvi HN, Rafiya L, Rashid S, et al (2021) Chemical fertilizers and their impact on soil health. In Microbiota and biofertilizers, Vol 2. Springer International Publishing, Cham, pp 1–20

    Google Scholar 

  • Paul P, Ag MS, Singh R, Khan W (2019) Effect of integrated nitrogen management on quality and economics of sweet sorghum [Sorghum bicolor (L.) Moench]. J Pharmacogn Phytochem 8:1872–1874

    CAS  Google Scholar 

  • Poniewozik M, Paska W (2013) Composition of selected phyto-and zoocenozis in small, astatic water bodies Teka Kom. Ochr Kszt ĝrod Przyr OL PAN 10:360–369

    Google Scholar 

  • Poorniammal R, Senthilkumar M, Prabhu S, Anandhi K (2020) Effect of methylobacterium on seed germination, growth and yield of barnyard millet (Echinochloa frumentacea Var. COKV 2) under rainfed condition. J Pharmacogn Phytochem 9:1675–1677. https://doi.org/10.22271/phyto.2020.v9.i2ab.11098

    Article  Google Scholar 

  • Prasad SK, Singh MK, Prasad SK et al (2014) Effect of nitrogen and zinc fertilizer on pearl millet (Pennisetum glaucum) under agri-horti system of eastern Uttar Pradesh. Significance 400, 0-05

    Google Scholar 

  • Rafi MM, Varalakshmi T, Charyulu P (2012) Influence of Azospirillum and PSB inoculation on growth and yield of foxtail millet. J Microbiol Biotech Res 2(4):558–565

    Google Scholar 

  • Ram K, Meena R (2015) Evaluation of pearl millet and mungbean intercropping systems in arid region of Rajasthan (India). Bangladesh J Bot 43:367–370. https://doi.org/10.3329/bjb.v43i3.21616

    Article  Google Scholar 

  • Ramadhani I, Suliasih, Widawati S, et al (2019) The effect of the combination of arbuscular mycorrhiza and rhizobacteria and doses of NPK fertilizer on the growth of Sorghum bicolor (L.) Moench. In IOP Conference Series: Earth and Environmental Science. Institute of Physics Publishing

    Google Scholar 

  • Rani S, Triveni U, Patro TSSK (2017) Integrated nutrient management for enhancing the soil health, yield and quality of little millet (Panicum sumatrense). Int J Bio-resource Stress Manag 8:26–32. https://doi.org/10.23910/IJBSM/2017.8.1.1672

    Article  Google Scholar 

  • Rani SK, Satish P, Sudha Rani C, Sudhakar C (2019) Chemical science review and letters effect of liquid biofertilizers on growth and yield of rabi sorghum (Sorghum bicolor L.). Chem Sci Rev Lett 8:190–194

    CAS  Google Scholar 

  • Rani Y, Jamuna P, Joga Rao P et al (2020) Yield and quality of little millet (Panicum sumatrense) as influenced by organic manures and inorganic fertilizers. J Pharmacogn Phytochem 9(5):595–598

    CAS  Google Scholar 

  • Rani S, Satish P, Rani CS, Sudhakar C (2021) Effect of liquid biofertilizers on growth and yield of rabi sorghum (Sorghum bicolor L.). Chem Sci Rev Lett 2019 8(32):190–194

    Google Scholar 

  • Sagar A, Sayyed RZ, Ramteke PW et al (2020) ACC deaminase and antioxidant enzymes producing halophilic Enterobacter sp. PR14 promotes the growth of rice and millets under salinity stress. Physiol Mol Biol Plants 26:1847–1854. https://doi.org/10.1007/s12298-020-00852-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saharan K, Schütz L, Kahmen A et al (2018) Finger millet growth and nutrient uptake is improved in intercropping with pigeon pea through “biofertilization” and “bioirrigation” mediated by arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria. Front Environ Sci 6:46. https://doi.org/10.3389/fenvs.2018.00046

    Article  Google Scholar 

  • Satish L, Ceasar SA, Shilpha J et al (2015) Direct plant regeneration from in vitro-derived shoot apical meristems of finger millet (Eleusine coracana (L.) Gaertn.). In Vitro Cell Dev Biol Plant 51:192–200. https://doi.org/10.1007/s11627-015-9672-2

    Article  Google Scholar 

  • Satish L, Rency AS, Rathinapriya P et al (2016) Influence of plant growth regulators and spermidine on somatic embryogenesis and plant regeneration in four Indian genotypes of finger millet (Eleusine coracana (L.) Gaertn). Plant Cell. Tissue Organ Culture (PCTOC) 124:15–31. https://doi.org/10.1007/s11240-015-0870-8

    Article  CAS  Google Scholar 

  • Saxena R, Vanga S, Wang J et al (2018) Millets for food security in the context of climate change: a review. Sustainability 10:2228. https://doi.org/10.3390/su10072228

    Article  Google Scholar 

  • Sharma N, Singhvi R (2017) Effects of chemical fertilizers and pesticides on human health and environment: a review. Int J Agric Environ Biotechnol 10:675. https://doi.org/10.5958/2230-732X.2017.00083.3

    Article  Google Scholar 

  • Sharmili K, Manoharan S (2018) Studies on intercropping in rainfed little millet (Panicum sumatrense). Int J Curr Microbiol Appl Sci 7:323–327. https://doi.org/10.20546/ijcmas.2018.702.042

    Article  Google Scholar 

  • Shivakumar BC, Girish AC, Gowda B et al (2011) Influence of Pongamia, Mahua and Neem cakes on finger millet productivity and soil fertility. J Appl Nat Sci 3:274–276. https://doi.org/10.31018/jans.v3i2.195

    Article  Google Scholar 

  • Siddiqui DA, Sharma GK, Chandrakar T et al (2020) Differential levels of fertilizer and row spacing affects growth and yield of brown top millet [Brachiaria ramosa (L.)] in Entisols of Bastar Plateau Zone of Chhattisgarh. Int J Curr Microbiol Appl Sci 9:3459–3472. https://doi.org/10.20546/ijcmas.2020.908.401

    Article  CAS  Google Scholar 

  • Singh D, Raghuvanshi K (2016) Effect of biofertilizers on growth and yield of pearl millet (Pennisetum glaucum L.). Res Environ Life Sci 9(3):385–386

    CAS  Google Scholar 

  • Singh G, Bhattacharyya R, Das TK et al (2018) Crop rotation and residue management effects on soil enzyme activities, glomalin and aggregate stability under zero tillage in the Indo-Gangetic Plains. Soil Tillage Res 184:291–300. https://doi.org/10.1016/j.still.2018.08.006

    Article  Google Scholar 

  • Sumalata, Byadgi SN, Siddaraju R (2020) Influence of integrated nutrient sources and seed priming on growth seed yield and quality in Nutri-cereal Proso millet. J Pharmacogn Phytochem 9(2):1074–1078

    CAS  Google Scholar 

  • Thilakarathna MS, Raizada MN (2015) A review of nutrient management studies involving finger millet in the semi-arid tropics of Asia and Africa. Agronomy 5(3):262–290

    Article  Google Scholar 

  • Tsoy OV, Ravcheev DA, Čuklina J (2016) Gelfand MS (2016) Nitrogen fixation and molecular oxygen: comparative genomic reconstruction of transcription regulation in alphaproteobacteria. Front Microbiol 7:1343. https://doi.org/10.3389/fmicb.2016.01343

    Article  PubMed  PubMed Central  Google Scholar 

  • Tyagi J, Varma A, Pudake R (2017) Evaluation of comparative effects of arbuscular mycorrhiza (Rhizophagus intraradices) and endophyte (Piriformospora indica) association with finger millet (Eleusine coracana) under drought stress. Eur J Soil Biol 81:1–10. https://doi.org/10.1016/j.ejsobi.2017.05.007

    Article  CAS  Google Scholar 

  • Tyagi J, Shrivastava N, Sharma AK, Varma A, Pudake R (2021) Effect of Rhizophagus intraradices on growth and physiological performance of Finger Millet (Eleusine coracana L.) under drought stress. Plant Sci Today 8(4):912–923. https://doi.org/10.14719/pst.2021.8.4.1240

    Article  CAS  Google Scholar 

  • Veerendra M, Padmaja B, Sodimalla T (2021) Yield, nutrient uptake, quality and economics of foxtail millet cultivation as influenced by integrated nutrient management with bacterial consortia and liquid manures biofilms. Int J Curr Microbiol Appl Sci 10(3):1703–1711. https://doi.org/10.20546/ijcmas.2021.1003.212

    Article  CAS  Google Scholar 

  • Veerendra M, Padmaja B, Reddy MM, Triveni S (2022) Soil biological properties as affected by the conjunction of chemical fertilizers, bacterial consortia and bio-enhancers in foxtail millet cultivation. Environ Conserv J 23:342–350. https://doi.org/10.36953/ECJ.021959-2199

    Article  CAS  Google Scholar 

  • Venkataraman G, Tilak K (1990) Biofertilizers in sustainable agriculture. In: Soil fertility and fertilizer use. Nutrient management and supply system for sustaining agriculture in 1990s, pp 137–148

    Google Scholar 

  • Wafula WN, Nicholas KK, Henry OF et al (2016) Finger millet (Eleusine coracana L.) grain yield and yield components as influenced by phosphorus application and variety in Western Kenya. Trop Plant Res 3:673–680. https://doi.org/10.22271/tpr.2016.v3.i3.088

    Article  Google Scholar 

  • Wang J, Vanga S, Saxena R et al (2018) Effect of climate change on the yield of cereal crops: a review. Climate 6:41. https://doi.org/10.3390/cli6020041

    Article  Google Scholar 

  • Ward NL, Challacombe JF, Janssen PH et al (2009) Three genomes from the phylum acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75:2046–2056. https://doi.org/10.1128/AEM.02294-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Han Y, Yi M et al (2019) Shift of millet rhizosphere bacterial community during the maturation of parent soil revealed by 16S rDNA high-throughput sequencing. Appl Soil Ecol 135:157–165. https://doi.org/10.1016/j.apsoil.2018.12.004

    Article  Google Scholar 

  • Yadav R, Malik N (2010) Productivity of barnyard millet (Echinochloa frumentacea) in relation to organic nutrition under rainfed conditions of Western Himalaya region. Indian J Agron 55:105–109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohini Mattoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mattoo, R., B M, S. (2023). Comparison of Rhizospheric Functional Diversity Between Chemically Fertilized and Bioinoculated Millet. In: Pudake, R.N., Kumari, M., Sapkal, D.R., Sharma, A.K. (eds) Millet Rhizosphere . Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-99-2166-9_7

Download citation

Publish with us

Policies and ethics