Skip to main content

Current Insights into the Role of Rhizosphere Bacteria in Disease Suppression in Millets

  • Chapter
  • First Online:
Millet Rhizosphere

Abstract

Millets are considered as smart food or nutri-cereals and they are rich in micronutrients and vitamins and a better substitution of major cereals. There is an increasing awareness among the farmers, scientists, policymakers, and other stakeholders more particularly the consumers about the beneficial role of millets in day-to-day life. The millets are moderately to highly resistant to most of the pathogens due to their hardy nature and mostly grown under rainfed conditions. However, certain diseases of millets are considered as economically important due to the severity of yield losses it causes. The long-term use of fungicides to control the diseases causes irreparable damage to the environment. Though the development of resistant cultivars against the emerging pathogens is a superior strategy as part of integrated disease management, the occurrence of a wide pathogenic variability and the development of resistance in different populations of pathogens present a serious threat to the development of resistant cultivars. Biological control of millet diseases with rhizobacteria or endophytes is a novel tool for eco-friendly management of diseases. The foremost diseases of millets, which cause great economic losses are charcoal rot in sorghum, grain mold in sorghum, anthracnose in sorghum, downy mildew of pearl millet, blast of finger millet, and foot rot in finger millet. Bacillus sp., Pseudomonas sp., and Trichoderma sp. are the successful rhizobacteria used as biocontrol agents for the management of these diseases. The mechanism of biocontrol of these destructive diseases by the rhizobacteria involves production of hydrolytic enzymes, induction of systemic resistance through synthesis of pathogenesis-related proteins and defensive enzymes, production of antimicrobial compounds, hydrogen cyanide, and siderophore production. In addition, these rhizobacterial agents promote the plant growth by secretion of growth hormones (IAA, cytokinin, gibberellins, etc.), solubilization of mineral nutrients, nitrogen fixation, etc. The present chapter deals with the biocontrol of major diseases of the millets by rhizobacteria and their mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akhtar M, Siddiqui Z (2006) Effects of phosphate solubilizing solubilizing microorganisms on the growth and root-rot disease complex of chickpea. Mikologiia I Fitopatologiia 40(3):246

    CAS  Google Scholar 

  • Anand A, Chinchilla D, Tan C, Mene-Saffrane L, Haridon FL, Weisskopf L (2020) Contribution of hydrogen cyanide to the antagonistic activity of Pseudomonas strains against Pytophthora infestans. Microorganisms 8(8):1144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atri A, Singh N, Oberoi H (2019) Influence of seed priming on the development of pearl millet downy mildew (Sclerospora graminicola). Indian Phytopathol 72:209–215

    Google Scholar 

  • Atri A, Banyal D, Bhardwaj N, Roy A (2022) Exploring the integrated use of fungicides, bio-control agent and biopesticide for management of foliar diseases (anthracnose, grey leaf spot and zonate leaf spot) of sorghum. Int J Pest Manag 1–12

    Google Scholar 

  • Bhuiyan M, Khanam D, Hossain M, Ahmed M (2008) Effect of Rhizobium inoculation on nodulation and yield of chickpea in calcareous soil. Bangladesh J Agric Res 33(4):549–554

    Google Scholar 

  • Biniarz P, Lukaszewics M, Janek T (2017) Screening concepts, characterization characterization and structural analysis of microbial-derived bioactive lipopeptides: a review. Crit Rev Biotechnol 37(3):393–410. https://doi.org/10.3109/07388551.2016.1163324

    Article  CAS  PubMed  Google Scholar 

  • Brar DS, Khush GS (2018) Wild relatives of rice: a valuable genetic resource for genomics and breeding research. In: Mondal TK, Henry RJ (eds) Compendium of plant genomes: the wild Oryza genomes. Springer, Berlin, pp 1–25. https://doi.org/10.1007/978-3-319-71997-9_1

    Chapter  Google Scholar 

  • Buchenauer H (1998) Biological control of soil-borne diseases by rhizobacteria/Biologische Bekämpfung von bodenbürtigen Krankheiten durch Rhizobakterien. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/J Plant Dis Prot 1:329–348

    Google Scholar 

  • Chen Y, Jurkevitch E, Bar-Ness E, Hadar Y (1994) Stability constants of pseudobactin complexes with transition metals. Soil Sci Soc Am J 58:390–396

    CAS  Google Scholar 

  • Cipollone R, Frangipani E, Tiburzi F, Imperi F, Ascenzi P, Visca P (2007) Involvement of Pseudomonas aeruginosa rhodanese in protection from cyanide toxicity. Appl Environ Microbiol 73(2):390–398. https://doi.org/10.1128/AEM.02143-06

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Duffy B, Nowak J et al (2005) Use of plant growth promoting bacteria for biocontrol of plant diseases: principle, mechanisms of action, and future prospects. Appl Environ Microb 71:4951–4959

    CAS  Google Scholar 

  • Corbett JR (1974) Pesticide design. In: Voisard C (ed) The biochemical mode of action of pesticides. Academic, London, pp 44–86

    Google Scholar 

  • Cruz CD, Valent B (2017) Wheat blast disease: danger on the move. Trop Plant Pathol 42:210–222. https://doi.org/10.1007/s40858-017-0159-z

    Article  Google Scholar 

  • Cui H, Tsuda K, Parker JE (2015) Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol 66:487–485

    CAS  PubMed  Google Scholar 

  • Cunningham L, Pitt M, Williams HD (1997) The cioAB genes from Pseudomonas aeruginosa code for a novel cyanide-insensitive terminal oxidase related to the cytochrome bd quinol oxidases. Mol Microbiol 24(3):579–591

    CAS  PubMed  Google Scholar 

  • Das IK, Indira S, Annapurna A, Seetharama N (2008a) Biocontrol of charcoal rot in Sorghum sorghum by fluorescent pseudomonas associated with the rhizosphere. Crop Prot 27:1407–1414

    Google Scholar 

  • Das IK, Fakrudin B, Arora DK (2008b) RAPD cluster analysis and chlorate sensitivity of some Indian isolates of Macrophomina phaseolina from sorghum and their relationships with pathogenicity. Microbiol Res 163:215–224

    CAS  PubMed  Google Scholar 

  • Das IK, Aruna C, Tonapi VA (2020) Sorghum grain Mold. Indian Council of Agricultural Research–Indian Institute of Millets Research Publication, Hyderabad

    Google Scholar 

  • Defago G, Berling CH, Borger U, Keel C, Voisard C (1990) Suppression of black rot of tobacco by a Pseudomonas strain: potential applications and mechanisms. In: Hornby D, Cook RJ, Henis Y (eds) Biological control of soil borne plant pathogen. CAB International, Wallingford, pp 93–108

    Google Scholar 

  • Desai VK, Rakholiya KBB (2021) Efficacy of bio agents for the management of sorghum grain mold. Int J Curr Microbiol App Sci 10(3):1770–1775. https://doi.org/10.20546/ijcmas.2021.1003.220

    Article  Google Scholar 

  • Diels L, Van der Lelie N, Bastiaens L (2002) New developments in treatment of heavy metal contaminated soils. Rev Environ Sci Biotechnol 1(1):75–82

    CAS  Google Scholar 

  • FAO (2017) The future of food and agriculture—trends and challenges. FAO, Rome

    Google Scholar 

  • Firdous J, Mona R, Muhamad N (2019) Endophytic bacteria and their potential application in agriculture: a review. Indian J Agric Res 53(1):1–7

    Google Scholar 

  • Florea S, Panaccione DG, Schardl CL (2017) Ergot alkaloids of the family Clavicipitaceae. Phytopathology 107:504–518. https://doi.org/10.1094/PHYTO-12-16-0435-RVW

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frangipani E, Pérez-Martínez I, Williams HD, Cherbuin G, Haas D (2014) A novel cyanide-inducible gene cluster helps protect Pseudomonas aeruginosa from cyanide. Environ Microbiol Rep 6(1):28–34. https://doi.org/10.1111/1758-2229

    Article  CAS  PubMed  Google Scholar 

  • Gavali M, Bansode S, Bhale U (2021) Biological control of charcoal rot of Jowar with the use of Trichoderma species. Bioinfolet 18:96–99

    Google Scholar 

  • Gopalakrishnan S, Srinivas V, Naresh N, Alekhya G, Sharma R (2019) Exploiting plant growth-promoting Amycolatopsis sp. for bio-control of charcoal rot of sorghum (Sorghum bicolor L.) caused by Macrophomina phaseolina (Tassi) Goid. Arch Phytopathol Plant Protect 52:543–559

    CAS  Google Scholar 

  • Gopalakrishnan S, Sharma R, Srinivas V, Naresh N, Mishra SP, Ankati S et al (2020) Identification and characterization of a Streptomyces albus strain and its secondary metabolite organophosphate against charcoal rot of Sorghum. Plants 9:1727. https://doi.org/10.3390/plants9121727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gopalakrishnan S et al (2021) Deciphering the antagonistic effect of Streptomyces spp. and host-plant resistance induction against charcoal rot of sorghum. Planta 253:1–12

    Google Scholar 

  • Govindasamy V, Senthilkumar M, Mageshwaran V, Kumar U, Bose P, Sharma V, Annapurna K (2010) Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture. In: Maheshwari DKK (ed) Plant growth and health promoting bacteria, microbiology monographs 18. https://doi.org/10.1007/978-3-642-13612-2_15

  • Gurjar GS, Giri AP, Gupta VS (2011) Gene expression profiling during wilting in chickpea caused by Fusarium oxypsoruum f. sp. ciceri. Am J Plant Sci 3:190–201

    Google Scholar 

  • Hammerbacher A, Coutinho TA, Gershenzon J (2019) Roles of plant volatiles in defence against microbial pathogens and microbial exploitation of volatiles. Plant Cell Environ 42(10):2827–2843

    CAS  PubMed  Google Scholar 

  • Han YJ, Zhong ZH, Song LL, Stefan O, Wang ZH, Lu GD (2018) Evolutionary analysis of plant jacalin-related lectins (JRLs) family and expression of rice JRLs in response to Magnaporthe oryzae. J Integr Agric 17:1252–1266. https://doi.org/10.1016/S2095-3119(17)61809-4

    Article  CAS  Google Scholar 

  • Harper FR, Seaman WL (1980) Ergot of rye in Alberta: estimation of yield and grade losses. Can J Plant Pathol 2:222–226. https://doi.org/10.1080/07060668009501414

    Article  Google Scholar 

  • Hyun J-W, Kim Y-H, Lee Y-S, Park W-M (1999) Isolation and evaluation of protective effect against Fusarium wilt of sesame plants of antibiotic substance from Bacillus polymyxa KB-8. Plant Pathol J 15(3):152–157

    Google Scholar 

  • Hyung EN, MacDonald J, Liu L, Richman A, Yuan ZC (2016) Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Factories 15(1):1–18

    Google Scholar 

  • Ijaz M et al (2021) Sulfur application combined with Planomicrobium sp. strain MSSA-10 and farmyard manure biochar helps in the Management of Charcoal rot Disease in sunflower (Helianthus annuus L.). Sustainability 13:8535

    CAS  Google Scholar 

  • Jamali H, Sharma A, Roohi, Srivastava AK (2020) Biocontrol potential of Bacillus subtilis RH5 against sheath blight or rice caused by Rhizoctonia solani. J Basic Microbiol 60(3):268–280. https://doi.org/10.1002/jobm.201900347

    Article  CAS  PubMed  Google Scholar 

  • Ji SH, Gururani MA, Chun SC (2014) Isolation and characterization characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169(1):83–98

    CAS  PubMed  Google Scholar 

  • Jiao X, Takishita Y, Zhou G, Smith DL (2021) Plant associated rhizobacteria for biocontrol and plant growth enhancement. Front Plant Sci 12:634796. https://doi.org/10.3389/flps.2021.634796

    Article  PubMed  PubMed Central  Google Scholar 

  • Jogaiah S, Kurjogi M, Govind SR, Huntrike SS, Basappa VA, Tran L-SP (2016) Isolation and evaluation of proteolytic actinomycete isolates as novel inducers of pearl millet downy mildew disease protection. Sci Rep 6:1–13

    Google Scholar 

  • Kalaria RK, Patel A, Desai H (2020) Isolation and characterization of dominant species associated as grain mold complex of sorghum under south Gujarat region of India. Indian Phytopathol 73:159–164. https://doi.org/10.1007/s42360-020-00196-0

    Article  Google Scholar 

  • Kim H-S, Park J, Choi S-W, Choi K-H, Lee G-P, Ban S-J, Lee C-H, Kim C-S (2003) Isolation and characterization characterization of Bacillus strains for biological control. J Microbiol 41(3):196–201

    CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease suppressive soils. Curr Microbiol 4:317–320

    CAS  Google Scholar 

  • Kumar B, Kumar J (2011) Management of blast disease of finger millet (Eleusine coracana) through fungicides, bioagents and varietal mixture. Indian Phytopathol 64:272–274

    Google Scholar 

  • Kumar B, Rashmi Y (2012) Influence of nitrogen fertilizer dose on blast disease of finger millet caused by Pyricularia grisea. Indian Phytopathol 65(1):52–55

    Google Scholar 

  • Kumar A, Jindal SK, Dhaliwal MS, Sharma A, Kaur S, Jain S (2019) Gene pyramiding for elite tomato genotypes against ToLCV (Begomovirus spp.), late blight (Phytophthora infestans) and RKN (Meloidogyne spp.) for northern India farmers. Physiol Mol Biol Plants 25:1197–1209. https://doi.org/10.1007/s12298-019-00700-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari P, Khanna V (2016) Allelopathic effects of native Bacillus sp. against Fusarium oxysporum causing chickpea wilt. Allelopath J 38(1):77–90

    Google Scholar 

  • Kumari S, Khanna V (2019) Induction of systemic resistance in chickpea (Cicer arietinum L.) against Fusarium oxysproum f. sp. ciceri by antagonistic rhizobacteria in assistance with native Mesorhizobium. Curr Microbiol 51(1):1–11. https://doi.org/10.1007/s00284-019-01805-6

    Article  CAS  Google Scholar 

  • Kushwaha P, Kashyap PL, Kuppusamy P, Srivastava AK, Tiwari RK (2020a) Functional characterization of endophytic bacilli from pearl millet (Pennisetum glaucum) and their possible role in multiple stress tolerance. Plant Biosyst 154:503–514

    Google Scholar 

  • Kushwaha P, Kashyap PL, Srivastava AK, Tiwari RK (2020b) Plant growth promoting and antifungal activity in endophytic Bacillus strains from pearl millet (Pennisetum glaucum). Braz J Microbiol 51:229–241

    CAS  PubMed  Google Scholar 

  • Kyratzis AC, Nikoloudakis N, Katsiotis A (2019) Genetic variability in landraces populations and the risk to lose genetic variation. The example of landrace ‘Kyperounda’ and its implications for ex situ conservation. PLoS One 11:e0224255. https://doi.org/10.1371/journal.pone.0224255

    Article  CAS  Google Scholar 

  • Lavanya SN, Niranjan-Raj S, Nayaka SC, Amruthesh KN (2017) Systemic protection against pearl millet downy mildew disease induced by cell wall glucan elicitors from Trichoderma hamatum UOM 13. J Plant Protect Res 57:296. https://doi.org/10.1515/jppr-2017-0042

    Article  CAS  Google Scholar 

  • Lavanya SN et al (2022) Immunity elicitors for induced resistance against the downy mildew pathogen in pearl millet. Sci Rep 12:1–17

    Google Scholar 

  • Laville J, Blumer C, Von Schroetter C, Gaia V, Défago G, Keel C, Haas D (1998) Characterization characterization of the hcn ABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0. J Bacteriol 180:3187–3196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Litwin CM, Calderwood S (1993) Role of iron in regulation of virulence genes. Clin Microbiol Rev 6(2):137–149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Overy DP, Cayouette J, Shoukouhi P, Hicks C, Bisson K, Sproule A, Wyka SA, Broders K, Popovic Z et al (2020) Four phylogenetic species of ergot from Canada and their characteristics in morphology, alkaloid production, and pathogenicity. Mycologia 112:974–988. https://doi.org/10.1080/00275514.2020.1797372

    Article  CAS  PubMed  Google Scholar 

  • Loper JE, Henkels MD (1999) Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 65:5357–5363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mageshwaran V, Walia S, Annapurna K (2012) Isolation and partial characterization characterization of antibacterial lipopeptide produced by Paenibacillus polymyxa HKA-15 against phytopathogen Xanthomonas campestris pv. phaseoli M-5. World J Microbiol Biotechnol 28:909–917

    CAS  PubMed  Google Scholar 

  • Malagitti P, Umashankar N, Raveendra H, Benherlal P, Tulja S (2021) Synergistic effect of biocontrol agents and chitosan on control of foot rot disease in finger millet. Int J Chem Stud 9:976–982

    Google Scholar 

  • Malea PM, Serepa-Diamini MH (2019) Current understanding of bacterial endophytes. The diversity and colonization and their roles in promoting plant-growth. Appl Microbiol Open Access 5:157. https://doi.org/10.4172/2471-9315.1000157

    Article  Google Scholar 

  • Manu TGG, Nagaraja A, Janawad CS, Hosamani V (2012) Efficacy of fungicides and biocontrol agents against Sclerotium rolfsii causing foot rot disease in finger millet under in vitro conditions. Glob J Biol Agric Health Sci 1(12):46–50

    Google Scholar 

  • Manzar N, Singh Y (2020) Evaluation of the efficacy of culture filtrate of Trichoderma isolates against Colletotrichum graminicola causing anthracnose of sorghum. Int J Curr Microbiol App Sci 9:820–825

    CAS  Google Scholar 

  • Manzar N, Singh Y, Shankar Kashyap A, Kumar Sahu P, Vikram Singh Rajawat M, Bhowmik A, Kumar Sharma P, Kumar Saxena A (2021) Biocontrol potential of native Trichoderma spp. against anthracnose of great millet (Sorghum bicolor L.) from Tarai and hill regions in India. Biol Control 152:104474. https://doi.org/10.1016/j.biocontrol.2020.104474

    Article  CAS  Google Scholar 

  • Menzies JG, Turkington TK (2015) An overview of the ergot (Claviceps purpurea) issue in western Canada: challenges and solutions. Can J Plant Pathol 37:40–51. https://doi.org/10.1080/07060661.2014.986527

    Article  Google Scholar 

  • Mikusova P, Srobarova A, Sulyok M, Santini A (2013) Fusarium fungi and associated metabolites presence on grapes from Slovakia. Mycotoxin Res 29(2):97–102

    CAS  PubMed  Google Scholar 

  • Mofokeng M, Shimelis H, Laing MD (2017) Agro-morphological diversity of south African sorghum genotypes assessed through quantitative and qualitative phenotypic traits. S Afr J Plant Soil 34:1–10. https://doi.org/10.1080/02571862.2017.1319504

    Article  Google Scholar 

  • Morales-Cedeño LR, del Carmen Orozco-Mosqueda M, Loeza-Lara PD, Parra-Cota FI, de Los Santos-Villalobos S, Santoyo G (2021) Plant growth-promoting bacterial endophytes as biocontrol agents of pre-and post-harvest diseases: fundamentals, methods of application and future perspectives. Microbiol Res 242:126612

    PubMed  Google Scholar 

  • Müller T, Behrendt U, Ruppel S, Von Der Waydbrink G, Muller ME (2016) Fluorescent pseudomonads in the phyllosphere of wheat: potential antagonists against fungal phytopathogens. Curr Microbiol 72:383–389. https://doi.org/10.1007/s00284-015-0966-8

    Article  CAS  PubMed  Google Scholar 

  • Murali M, Amruthesh KN (2015) Plant growth-promoting fungus Penicillium oxalicum enhances plant growth and induces resistance in pearl millet against downy mildew disease. J Phytopathol 163:743–754

    CAS  Google Scholar 

  • Mwakinyali SE, Ding X, Ming Z, Tong W, Zhang Q, Li P (2019) Recent development of aflatoxin contamination biocontrol in agricultural products. Biol Control 128:31–39

    CAS  Google Scholar 

  • Nagaraja A, Anjaneya Reddy B (2009) Foot rot of finger millet—an increasing disease problem in Karnataka. Crop Res 38(1–3):224–225

    Google Scholar 

  • Nagaraja A, Kumar B, Raghuchander T et al (2012) Impact of disease management practices on finger millet blast and grain yield. Indian Phytopathol 65(4):356–359

    Google Scholar 

  • Nagendran K, Karthikeyan G, Faisal PM, Kalaiselvi P, Raveendran M, Prabakr K, Raguchander T (2014) Exploiting endophytic bacteria for the management of sheath blight disease in rice. Biol Agric Hortic 30(1):8–23. https://doi.org/10.1080/01448765.2013.841099

    Article  Google Scholar 

  • Nandhini M, Rajini S, Udayashankar A, Niranjana S, Lund OS, Shetty H, Prakash H (2018) Diversity, plant growth promoting and downy mildew disease suppression potential of cultivable endophytic fungal communities associated with pearl millet. Biol Control 127:127–138

    Google Scholar 

  • Nandini B, Hariprasad P, Prakash HS, Geetha N (2017a) Trichoderma oligosaccharides priming mediates resistance responses in pearl millet against Downy Mildew pathogen. J Appl Biol Biotechnol 5:97–103

    CAS  Google Scholar 

  • Nandini B, Hariprasad P, Shankara HN, Prakash HS, Geetha N (2017b) Total crude protein extract of Trichoderma spp. induces systemic resistance in pearl millet against the downy mildew pathogen. 3 Biotech 7:1–10

    CAS  Google Scholar 

  • Nandini B, Hariprasad P, Prakash HS, Shetty HS, Geetha N (2017c) Trichogenic-selenium nanoparticles enhance disease suppressive ability of Trichoderma against downy mildew disease caused by Sclerospora graminicola in pearl millet. Sci Rep 7:1–11

    CAS  Google Scholar 

  • Nandini B, Puttaswamy H, Prakash HS, Adhikari S, Jogaiah S, Nagaraja G (2019) Elicitation of novel trichogenic-lipid nanoemulsion signaling resistance against pearl millet downy mildew disease. Biomolecules 10:25

    PubMed  PubMed Central  Google Scholar 

  • Nandini B, Geetha N, Prakash HS, Hariparsad P (2021a) Natural uptake of anti-oomycetes Trichoderma produced secondary metabolites from pearl millet seedlings—a new mechanism of biological control of downy mildew disease. Biol Control 156:104550

    CAS  Google Scholar 

  • Nandini B, Puttaswamy H, Saini RK, Prakash HS, Geetha N (2021b) Trichovariability in rhizosphere soil samples and their biocontrol potential against downy mildew pathogen in pearl millet. Sci Rep 11:1–15

    Google Scholar 

  • Negi YK, Prabha D, Garg SK, Kumar J (2017) Biological control of ragi blast disease by chitinase producing fluorescent Pseudomonas isolates. Org Agric 7:63–71

    Google Scholar 

  • Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P (2018) Navigating complexity to breed disease-resistant crops. Nat Rev Genet 19:2

    Google Scholar 

  • Netam RS, Tiwari RKS, Bahadur AN, Kumar P, Yadav SC (2016) Efficacy of bio-control agents for the management of (Pyricularia grisea) blast disease of finger millet under field condition of Bastar, Chhattisgarh. J Pure Appl Microbiol 10(3):2421–2425

    Google Scholar 

  • Nida H, Girma G, Mekonen M, Lee S, Seyoum A, Dessalgen K et al (2019) Identification of sorghum grain mold resistance loci through genome wide association mapping. J Cereal Sci 85:295–304. https://doi.org/10.1016/j.jcs.2018.12.016

    Article  CAS  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  PubMed Central  Google Scholar 

  • Orina I, Manley M, Williams PJ (2017) Non-destructive techniques for the detection of fungal infection in cereal grains. Food Res Int 100:74–86

    CAS  PubMed  Google Scholar 

  • Orlando B, Maumené C, Piraux F (2017) Ergot and ergot alkaloids in French cereals: occurrence, pattern and agronomic practices for managing the risk. World Mycol J 10:327–338. https://doi.org/10.3920/WMJ2017.2183

    Article  CAS  Google Scholar 

  • Pitt JI, Miller JD (2017) A concise history of mycotoxin research. J Agric Food Chem 65:7021–7033. https://doi.org/10.1021/acs.jafc.6b04494

    Article  CAS  PubMed  Google Scholar 

  • Prajapati VP, Sabalpara AN, Pawar DM (2013) Assessment of yield loss due to finger millet blast caused by Pyricularia grisea (Cooke) Sacc. Trends Biosci 6:876–788

    Google Scholar 

  • Prajapati V, Chaudhary R, Deshmukh A, Bambharolia R, Gajre N (2020) Management of blast (Pyricularia grisea) of finger millet with fungicides and biocontrol agents. Plant Dis Res 35:36–41

    Google Scholar 

  • Radjacommare R, Ramanathan A, Kandan A, Sible GV, Harish S, Samiyappan R (2004) Purification and anti-fungal activity of chitinase against Pyricularia grisea in finger millet. World J Microbiol Biotechnol 20:251–256. https://doi.org/10.1023/B:WIBI.0000023829.98282.0f

    Article  CAS  Google Scholar 

  • Rajini SB, Nandhini M, Udayashankar AC, Niranjana SR, Lund OS, Prakash HS (2020) Diversity, plant growth-promoting traits, and biocontrol potential of fungal endophytes of Sorghum Sorghum bicolor. Plant Pathol 69:642–654. https://doi.org/10.1111/ppa.13151

    Article  CAS  Google Scholar 

  • Ramakrishna W, Yadav R, Li K (2019) Plant growth promoting bacteria in agriculture: two sides of a coin. Appl Soil Ecol 138:10–18

    Google Scholar 

  • Ramette A, Moenne LY, Defago G (2003) Prevalence of fluorescent pseudomonads producing antifungal phloroglucinols and/or hydrogen cyanide in soils naturally suppressive or conducive to tobacco black root rot. FEMS Microbiol Ecol 44:35–43

    CAS  PubMed  Google Scholar 

  • Rawat L, Bisht TS, Prasad S, Samuel T, Patro SK (2018) Management of important endemic diseases of barnyard millet (Echinochloa frumentacea L.) by the use of bio-control agents in mid hills of Uttarakhand, India. Int J Curr Microbiol Appl Sci 7(2):64–70. https://doi.org/10.20546/ijcmas.2018.702.00

    Article  Google Scholar 

  • Rawat L, Bisht T, Kukreti A (2022) Potential of seed biopriming with Trichoderma in ameliorating salinity stress and providing resistance against leaf blast disease in finger millet (Eleusine coracana L.). Indian Phytopathol 75:147–164

    Google Scholar 

  • Reetha AK, Pavani SL, Mohan S (2014) Hydrogen cyanide production ability by bacterial antagonist and their antibiotics inhibition potential on Macrophomina phaseolina (Tassi.) Goid. Int J Curr Microbiol App Sci 3(5):172–178

    Google Scholar 

  • Rezzonico F, Zala M, Keel C, Duffy B, Moënne-Loccoz Y, Défago G (2007) Is the ability of biocontrol fluorescent pseudomonads to produce the antifungal metabolite 2,4-diacetylphloroglucinol really synonymous with higher plant protection? New Phytol 173:861–872

    CAS  PubMed  Google Scholar 

  • Rosenblueth M, Matrinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19(8):827–837. https://doi.org/10.1094/MPMI-19-0827

    Article  CAS  PubMed  Google Scholar 

  • Rudresh DL, Shivaprakash MK, Prasad RD (2005) Potential of Trichoderma spp. as biocontrol agents of pathogens involved in wilt complex of chickpea (Cicer arietinum L.). J Biol Control 19(2):157–166

    Google Scholar 

  • Sahu PK, Singh S, Gupta A, Singh UB, Bhramaprakash GP, Saxena AK (2019) Antagonistic potential of bacterial endophytes and induction of systemic resistance against collar rot pathogen Sclerotium rolfsii in tomato. Biol Control 137:104014. https://doi.org/10.1016/j.biocontrol.2019.104014

    Article  CAS  Google Scholar 

  • Sahu PK, Singh S, Gupta AR, Gupta A, Singh UB, Manzar N, Bhowmik A, Singh HV, Saxena AK (2020) Endophytic bacilli from medicinal-aromatic perennial Holy basil (Ocimum tenuiflorum L.) modulate plant growth promotion and induced systemic resistance against Rhizoctonia solani in rice (Oryza sativa L.). Biol Control 150:104353. https://doi.org/10.1016/j.biocontrol.2020.104353

    Article  CAS  Google Scholar 

  • Sangwan P, Raj K, Wati L, Kumar A (2021) Isolation and evaluation of bacterial endophytes against Sclerospora graminicola (Sacc.) Schroet, the causal of pearl millet downy mildew. Egypt J Biol Pest Control 31:1–11

    Google Scholar 

  • Santos ML, Berlitz DL, Wiest SLF, Schunemann R, Knaak N, Fiuza LM (2018) Benefits associated with the interaction of endophytic bacteria and plants. Braz Arch Biol Technol 61:2018. https://doi.org/10.1590/1678-4234-2018160431

    Article  Google Scholar 

  • Sekar J, Raju K, Duraisamy P, Vaiyapuri PR (2018) Potential of finger millet indigenous rhizobacterium Pseudomonas sp. MSSRFD41 in blast disease management growth promotion and compatibility with the resident rhizomicrobiome. Front Microbiol 9:1029. https://doi.org/10.3389/fmicb.2018.01029

    Article  PubMed  PubMed Central  Google Scholar 

  • Senthil R, Shanmugapackiam S, Raguchander T (2012) Evaluation of biocontrol agents and fungicides for the management of blast disease of finger millet. J Mycol Plant Pathol 42(4):454–458

    CAS  Google Scholar 

  • Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field grown potato plants and their plant growth promoting and antagonistic abilities. Can J Microbiol 50:239–249

    CAS  PubMed  Google Scholar 

  • Shoukouhi P, Hicks C, Menzies JG, Popovic Z, Chen W, Seifert KA, Assabgui R, Liu M (2019) Phylogeny of Canadian ergot fungi and a detection assay by real-time polymerase chain reaction. Mycologia 111:493–505. https://doi.org/10.1080/00275514.2019.1581018

    Article  CAS  PubMed  Google Scholar 

  • Siddaiah CN et al (2017) Elicitation of resistance and associated defense responses in Trichoderma hamatum induced protection against pearl millet downy mildew pathogen. Sci Rep 7:1–18

    Google Scholar 

  • Sudha A et al (2022) Unraveling the tripartite interaction of volatile compounds of Streptomyces rochei with grain mold pathogens infecting sorghum. Front Microbiol 13:923360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Lu Z, Bie X, Lu F, Yang S (2006) Isolation and characterization characterisation of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World J Microbiol Biotechnol 22(12):1259. https://doi.org/10.1007/s11274-006-9170-0

    Article  CAS  Google Scholar 

  • Suryakala D, Maheshwaridevi PV, Lakshmi KV (2004) Chemical characterization characterization and in vitro antibiosis of siderophores of rhizosphere fluorescent Pseudomonads. Indian J Microbiol 44:105–108

    CAS  Google Scholar 

  • Takan JP, Chipili J, Muthumeenakshi S, Talbot NJ, Manyasa EO, Bandyopadhyay R et al (2012) Magnaporthe oryzae populations adapted to finger millet and rice exhibit distinctive patterns of genetic diversity, sexuality and host interaction. Mol Biotechnol 50:145–158. https://doi.org/10.1007/s12033-011-9429-z

    Article  CAS  PubMed  Google Scholar 

  • Teja MBS, Mishra JP, Prasad R, Sekhar JC, Reddy VP, Kumar S, Kiranmayee V (2020) Isolation and in vitro evaluation of bio control agents against anthracnose of sorghum caused by Colletotrichum graminicola. J Pharmacognosy Phytochem 9:1304–1306

    CAS  Google Scholar 

  • Tendulkar SR, Sasikumari YK, Patel V, Raghotama S, Munshi TK, Balaram P, Chatto BB (2007) Isolation, purification and characterization characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. J Appl Microbiol 103(6):2331–2339. https://doi.org/10.1111/j.1365-2672.2007.03501.x

    Article  CAS  PubMed  Google Scholar 

  • Umesha S, Dharmesh SM, Shetty SA, Krishnappa M, Shetty HS (1998) Biocontrol of downy mildew disease of pearl millet using Pseudomonas fluorescens. Crop Prot 17(5):387–392

    Google Scholar 

  • Vacheron J, Desbrosses G, Renoud S, Padilla R, Walker V, Muller D et al (2017) Differential contribution of plant-beneficial functions from Pseudomonas kilonensis F113 to root system architecture alterations in Arabidopsis thaliana and Zea mays. Mol Plant Microbe Interact 31:212–223. https://doi.org/10.1094/MPMI-07-17-0185-R

    Article  PubMed  Google Scholar 

  • Vinodkumar S, Nakkeran S, Renukadevi P, Malathi VG (2017) Biocontrol potentials of antimicrobial peptide producing Bacillus species: multifaceted antagonistics for the management of stem rot of carnation caused by Sclerotinia sclerotiorum. Front Microbiol 8:446. https://doi.org/10.3389/fmicb.2017.00446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waghunde RR, Sabalpara AN, Naik BB, Pravinbhai PP (2013) Biological control of finger millet (Elusine coracana L.) leaf blast incited by Magnaporthe grisea (Cke) Sacc. J Mycopathol Res 51:125–130

    Google Scholar 

  • Wang X, Mavrodi DV, Ke L, Mavrodi OV, Yang M, Thomashow LS et al (2015) Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils. Microb Biotechnol 8:404–418. https://doi.org/10.1111/1751-7915.12158

    Article  CAS  PubMed  Google Scholar 

  • Weller DM (1983) Colonization of wheat roots by fluorescent pseudomonad suppressive to take-all. Phytopathology 73:1548

    Google Scholar 

  • Whipps J (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    CAS  PubMed  Google Scholar 

  • Yan Q, Philmus B, Chang JH, Loper JE (2017) Novel mechanism of metabolic co-regulation coordinates the biosynthesis of secondary metabolites in Pseudomonas protegens. Elife 6:e22835. https://doi.org/10.7554/eLife.22835

    Article  PubMed  PubMed Central  Google Scholar 

  • Yasmin S, Hafeez FY, Mirza MS, Rasul M, Arshad HMI, Zubair M et al (2017) Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Front Microbiol 8:1895. https://doi.org/10.3389/fmicb.2017.01895

    Article  PubMed  PubMed Central  Google Scholar 

  • Yassin MT, Mostafa AA-F, Al-Askar AA (2021) In vitro antagonistic activity of Trichoderma harzianum and T. viride strains compared to carbendazim fungicide against the fungal phytopathogens of Sorghum bicolor (L.) Moench. Egypt J Biol Pest Control 31:1–9

    Google Scholar 

  • Zaim S, Belabid L, Bellahcene M (2013) Biocontrol of chickpea fusarium wilt by Bacillus spp. Rhizobacteria. J Plant Protect Res 53(2):177–183

    Google Scholar 

  • Zaim S, Belabid L, Bayaa B, Bekkar AA (2016) Biological control of chickpea fusarium wilts using Rhizobacteria “PGPR”. In: Choudhary DK, Varma A (eds) Microbial-mediated induced systemic resistance in plants, pp 147–162. https://doi.org/10.1007/978-981-10-0388-2_10

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vellaichamy Mageshwaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mageshwaran, V., Paulraj, S., Nagaraju, Y. (2023). Current Insights into the Role of Rhizosphere Bacteria in Disease Suppression in Millets. In: Pudake, R.N., Kumari, M., Sapkal, D.R., Sharma, A.K. (eds) Millet Rhizosphere . Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-99-2166-9_6

Download citation

Publish with us

Policies and ethics