Skip to main content

Identification of Novel Microbial Strains for Reduced Pesticide Use in Millets

  • Chapter
  • First Online:
Millet Rhizosphere

Abstract

Millets are worldwide used crops, and more than thousands of varieties of millet crops are cultivated globally because of their beneficial supplement to the human diet. Also, it is rich in micronutrients and protein. Shoot fly, stem borer, and pink borer are the major millets’ pests that cause agricultural and economic losses and increase the demand for chemical or synthetic pesticides for millet crop protection. These pesticides affect the environment by manipulating ecosystems. The focus on microbial bioremediation procedures has been increased to maintain sustainable growth and reduce the economic, environmental, and health effects due to the overuse of pesticides. It has been observed that the rhizosphere microbes are the most potent natural bioremediation agent. For example, bacterial genera like Rhizobium (strain RF12 and RZ11), Flavobacterium, Actinobacter, Pseudomonas, Bacillus, Agrobacterium sp., etc., are identified as pesticide-degrading strains. Many microbial and fungal species also degrade major harmful chemicals like acetochlor, carfentrazone, and clothianidin. These chemicals are converted into nontoxic chemical compounds by the enzymatic action of the microorganisms of the Rhizobiaceae group. The researchers are currently focusing on isolating these novel microbial strains. These strains’ detailed genetic and molecular studies will help to manipulate their genetic makeup. Thus, the pesticide-degrading effect could be increased and further applied to large-scale use and producing genetically engineered crops as self-herbicide/insecticide/fungicide-resistant plants that eventually lead to reduced pesticide use. A whole microbial community and many novel strains like arbuscular mycorrhizal fungi (AMF) are found in the millet-cultivating soil. This chapter focuses on those novel microbial strains found in millets that can degrade pesticides. Several studies can be designed to isolate and characterize for further evaluation that could help to reduce the problems related to pesticide use soon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd-Alla MH (1994) Phosphodiesterase and phosphotriesterase in Rhizobium and Bradyrhizobium strains and their roles in the degradation of organophosphorus pesticides. Lett Appl Microbiol 19(4):240–243

    CAS  PubMed  Google Scholar 

  • Adegun AO, Akinnifesi TA, Ololade IA, Busquets R, Hooda PS, Cheung PC, Aseperi AK, Barker J (2020) Quantification of neonicotinoid pesticides in six cultivable fish species from the river Owena in Nigeria and a template for food safety assessment. Water 12(9):2422

    CAS  Google Scholar 

  • Adeleye IA, Okorodudu E, Lawal O (2004) Effect of some herbicides used in Nigeria on Rhizobium phaseoli, Azotobacter vinelandii and Bacillus subtilis. J Environ Biol 25(2):151–156

    CAS  PubMed  Google Scholar 

  • Akbar S, Sultan S, Kertesz M (2015) Determination of cypermethrin degradation potential of soil bacteria along with plant growth-promoting characteristics. Curr Microbiol 70(1):75–84

    CAS  PubMed  Google Scholar 

  • Alsohaili SA, Bani-Hasan BM (2018) Morphological and molecular identification of fungi isolated from different environmental sources in the Northern Eastern desert of Jordan. Jordan J Biol Sci 11(3):329–337

    Google Scholar 

  • Arya R, Kumar R, Mishra NK, Sharma AK (2017) Microbial flora and biodegradation of pesticides: trends, scope, and relevance. Adv Environ Biol 243–263

    Google Scholar 

  • Asim N, Hassan M, Shafique F, Ali M, Nayab H, Shafi N, Khawaja S, Manzoor S (2021) Characterizations of novel pesticide-degrading bacterial strains from industrial wastes found in the industrial cities of Pakistan and their biodegradation potential. PeerJ 9:e12211

    PubMed  PubMed Central  Google Scholar 

  • Bakker PA, Berendsen RL, Doornbos RF, Wintermans PC, Pieterse CM (2013) The rhizosphere revisited: root microbiomics. Front Plant Sci 4:165

    PubMed  PubMed Central  Google Scholar 

  • Bass C, Field LM (2011) Gene amplification and insecticide resistance. Pest Manag Sci 67(8):886–890

    CAS  PubMed  Google Scholar 

  • Bhatt P, Huang Y, Zhan H, Chen S (2019) Insight into microbial applications for the biodegradation of pyrethroid insecticides. Front Microbiol 10:1778

    PubMed  PubMed Central  Google Scholar 

  • Bordjiba O, Steiman R, Kadri M, Semadi A, Guiraud P (2001) Removal of herbicides from liquid media by fungi isolated from a contaminated soil. J Environ Qual 30(2):418–426

    CAS  PubMed  Google Scholar 

  • Christos AD (2009) Understanding benefits and risks of pesticide use. Sci Res Essays 4(10):945–949

    Google Scholar 

  • Daly H, Doyen JT, Purcell AH (1998) Introduction to insect biology and diversity, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Damalas CA (2009) Understanding benefits and risks of pesticide use. Sci Res Essays 4(10):945–949

    Google Scholar 

  • Elhussein AA, Osman AG, Sherif AM (2011) Isolation, characterization, identification and potentiality of fungicide thiram (TMTD) degraders under laboratory conditions. Int J Appl Environ Sci 6(2):193–199

    Google Scholar 

  • Fabra A, Angelini J, Donolo A, Permigiani M, Castro S (1998) Biochemical alterations in Bradyrhizobium sp USDA 3187 induced by the fungicide Mancozeb. Antonie Van Leeuwenhoek 73(3):223–228. https://doi.org/10.1023/a:1000987524112

    Article  CAS  PubMed  Google Scholar 

  • FAO (2017) Statistics, statistical pocketbook. FAO, Rome

    Google Scholar 

  • Gahukar RT, Reddy GV (2019) Management of economically important insect pests of millet. J Integr Pest Manag 10(1):28

    Google Scholar 

  • Gaind S, Rathi MS, Kaushik BD, Nain L, Verma OP (2007) Survival of bio-inoculants on fungicides-treated seeds of wheat, pea and chickpea and subsequent effect on chickpea yield. J Environ Sci Health B 42(6):663–668. https://doi.org/10.1080/03601230701465759

    Article  CAS  PubMed  Google Scholar 

  • Gilbert LI, Gill SS (eds) (2010) Insect control: biological and synthetic agents. Academic

    Google Scholar 

  • Gill HK, Garg H (2014) Pesticide: environmental impacts and management strategies. Pesticides-toxic aspects, 8, p 187

    Google Scholar 

  • Girgi M, O'Kennedy MM, Morgenstern A, Mayer G, Lörz H, Oldach KH (2002) Transgenic and herbicide resistant pearl millet (Pennisetum glaucum L.) R. Br. via microprojectile bombardment of scutellar tissue. Mol Breed 10:243–252

    CAS  Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5(4):355–377

    PubMed  Google Scholar 

  • Gupta M, Mathur S, Sharma TK, Rana M, Gairola A, Navani NK, Pathania R (2016) A study on metabolic prowess of Pseudomonas sp. RPT 52 to degrade imidacloprid, endosulfan and coragen. J Hazard Mater 301:250–258

    CAS  PubMed  Google Scholar 

  • Hameeda B, Rupela OP, Reddy G, Satyavani K (2006) Application of plant growth-promoting bacteria associated with composts and macrofauna for growth promotion of pearl millet (Pennisetum glaucum L.). Biol Fertil Soils 43(2):221–227

    Google Scholar 

  • Hassan AA (2010) Characterization of bacterial isolates (Rhizobium leguminosarum and Bacillus thuringiensis) able to degrade of malathion and methomyl pesticides. J Agric Chem Biotechnol 1(11):575–588

    Google Scholar 

  • Hussaini SZ, Shaker M, Iqbal MA (2013) Isolation of bacteria for degradation of selected pesticides. Adv Biores 4(3):82–85

    Google Scholar 

  • Iqbal MA, Bartakke KV (2014) Isolation of pesticide degrading microorganisms from soil. Adv Biores 4:164–168

    Google Scholar 

  • Jambagi SR, Kambrekar DN, Mallapur CP, Naik VR (2022) Novel insecticides for the management of shoot fly, Atherigona approximata Malloch (Diptera: Muscidae): an emerging insect pest of wheat in India. https://doi.org/10.21203/rs.3.rs-1120869/v1

  • Juwarkar AA, Jambhulkar HP (2008) Phytoremediation of coal mine spoil dump through integrated biotechnological approach. Bioresour Technol 99(11):4732–4741

    CAS  PubMed  Google Scholar 

  • Kafilzadeh F, Ebrahimnezhad M, Tahery Y (2015) Isolation and identification of endosulfan-degrading bacteria and evaluation of their bioremediation in Kor River, Iran. Osong Public Health Res Perspect 6(1):39–46

    PubMed  Google Scholar 

  • Kumar S, Chandra A, Pandey KC (2008) Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy. J Environ Biol 29(5):641–653

    CAS  PubMed  Google Scholar 

  • Kunze M, Zerlin KF, Retzlaff A, Pohl JO, Schmidt E, Janssen DB, Vilchez-Vargas R, Pieper DH, Reineke W (2009) Degradation of chloroaromatics by Pseudomonas putida GJ31: assembled route for chlorobenzene degradation encoded by clusters on plasmid pKW1 and the chromosome. Microbiology 155(12):4069–4083

    CAS  PubMed  Google Scholar 

  • Liu CM, McLean PA, Sookdeo CC, Cannon FC (1991) Degradation of the herbicide glyphosate by members of the family Rhizobiaceae. Appl Environ Microbiol 57(6):1799–1804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manickam N, Reddy MK, Saini HS, Shanker R (2008) Isolation of hexachlorocyclohexane-degrading Sphingomonas sp. by dehalogenase assay and characterization of genes involved in γ-HCH degradation. J Appl Microbiol 104(4):952–960

    CAS  PubMed  Google Scholar 

  • Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow MA, Verdier V, Beer SV, Machado MA, Toth IA (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13(6):614–629

    PubMed  PubMed Central  Google Scholar 

  • Masotti F, Garavaglia BS, Piazza A, Burdisso P, Altabe S, Gottig N, Ottado J (2021) Bacterial isolates from argentine pampas and their ability to degrade glyphosate. Sci Total Environ 774:145761

    CAS  PubMed  Google Scholar 

  • Melo ALDA, Soccol VT, Soccol CR (2016) Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review. Crit Rev Biotechnol 36(2):317–326

    CAS  PubMed  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663

    CAS  PubMed  Google Scholar 

  • Mirza BS, Mirza MS, Bano A, Malik KA (2007) Coinoculation of chickpea with Rhizobium isolates from roots and nodules and phytohormone-producing Enterobacter strains. Aust J Exp Agric 47(8):1008–1015

    Google Scholar 

  • Murali M, Amruthesh KN, Sudisha J, Niranjana SR, Shetty HS (2012) Screening for plant growth promoting fungi and their ability for growth promotion and induction of resistance in pearl millet against downy mildew disease. J Phytology 4(5):30–36

    Google Scholar 

  • Mythili M, Ramalakshmi A (2022) Unravelling the distribution of AMF communities and their metabolites associated with soils of minor millets. Rhizosphere 21:100473

    Google Scholar 

  • Nandini B, Puttaswamy H, Saini RK, Prakash HS, Geetha N (2021) Trichovariability in rhizosphere soil samples and their biocontrol potential against downy mildew pathogen in pearl millet. Sci Rep 11(1):1–15

    Google Scholar 

  • Nwanze KF, Harris KM (1992) Insect pests of pearl millet in West Africa. Rev Agric Entomol 80(12):1132–1155

    Google Scholar 

  • Oerke E (2006) Crop losses to pests. J Agric Sci 144(1):31–43. https://doi.org/10.1017/S0021859605005708

    Article  Google Scholar 

  • Ortiz-Hernández ML (2002) Biodegradación de plaguicidas organofosforados por nuevas bacterias aisladas del suelo. Thesis. Biotechnology PhD, pp 130

    Google Scholar 

  • Ortiz-Hernández ML, Sánchez-Salinas E, Olvera-Velona A, Folch-Mallol JL (2011) Pesticides in the environment: impacts and their biodegradation as a strategy for residues treatment. In: Pesticides—formulations, effects, fate, pp 551–574

    Google Scholar 

  • Ortiz-Hernández ML, Sánchez-Salinas E, Dantán-González E, Castrejón-Godínez ML (2013) Pesticide biodegradation: mechanisms, genetics, and strategies to enhance the process. Biodegrad Life Sci 10:251–287

    Google Scholar 

  • Ouw HK, Simpson GR, Siyali DS (1976) Use and health effects of Aroclor 1242, a polychlorinated biphenyl, in an electrical industry. Arch Environ Health 31(4):189–194

    CAS  PubMed  Google Scholar 

  • Pang S, Lin Z, Li J, Zhang Y, Mishra S, Bhatt P, Chen S (2022) Microbial degradation of Aldrin and Dieldrin: mechanisms and biochemical pathways. Front Microbiol 13:713375

    PubMed  PubMed Central  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11(11):789–799. https://doi.org/10.1038/nrmicro3109

    Article  CAS  PubMed  Google Scholar 

  • Pizzul L, Castillo MDP, Stenström J (2009) Degradation of glyphosate and other pesticides by ligninolytic enzymes. Biodegradation 20(6):751–759

    CAS  PubMed  Google Scholar 

  • Ramakrishnan B, Megharaj M, Venkateswarlu K, Sethunathan N, Naidu R (2011) Mixtures of environmental pollutants: effects on microorganisms and their activities in soils. In: Whitacre D (ed) Reviews of environmental contamination and toxicology, vol 211. Springer, New York. https://doi.org/10.1007/978-1-4419-8011-3_3

    Chapter  Google Scholar 

  • Rayu S, Nielsen UN, Nazaries L, Singh BK (2017) Isolation and molecular characterization of novel chlorpyrifos and 3, 5, 6-trichloro-2-pyridinol-degrading bacteria from sugarcane farm soils. Front Microbiol 8:518

    PubMed  PubMed Central  Google Scholar 

  • Reddy BR, Sethunathan N (1983) Mineralization of parathion in the rhizosphere of rice and pearl millet. J Agric Food Chem 31(6):1379–1381

    CAS  Google Scholar 

  • Robert Y, Woodford JT, Ducray-Bourdin DG (2000) Some epidemiological approaches to the control of aphid-borne virus diseases in seed potato crops in northern Europe. Virus Res 71(1–2):33–47

    CAS  PubMed  Google Scholar 

  • Roy T, Das N, Majumdar S (2020) Pesticide tolerant rhizobacteria: paradigm of disease management and plant growth promotion. In: Plant microbe Symbiosis. Springer, Cham, pp 221–239

    Google Scholar 

  • Roy T, Bandopadhyay A, Paul C, Majumdar S, Das N (2022) Role of plasmid in pesticide degradation and metal tolerance in two plant growth-promoting rhizobacteria Bacillus cereus (NCIM 5557) and Bacillus safensis (NCIM 5558). Curr Microbiol 79(4):1–12

    Google Scholar 

  • Sakamoto S (1987) Origin and dispersal of common millet and foxtail millet. JARQ 21(22):84–89

    Google Scholar 

  • Sangwan P, Raj K, Wati L, Kumar A (2021) Isolation and evaluation of bacterial endophytes against Sclerospora graminicola (Sacc.) Schroet, the causal of pearl millet downy mildew. Egypt J Biol Pest Control 31(1):1–11

    Google Scholar 

  • Sekar J, Raju K, Duraisamy P, Ramalingam Vaiyapuri P (2018) Potential of finger millet indigenous rhizobacterium Pseudomonas sp. MSSRFD41 in blast disease management—growth promotion and compatibility with the resident rhizomicrobiome. Front Microbiol 9:1029

    PubMed  PubMed Central  Google Scholar 

  • Sharma A, Kalyani P, Trivedi VD, Kapley A, Phale PS (2019) Nitrogen-dependent induction of atrazine degradation pathway in Pseudomonas sp. strain AKN5. FEMS Microbiol Lett 366(1):277

    Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30(3):428–471

    CAS  PubMed  Google Scholar 

  • Sinha S, Mukherjee SK (2008) Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr Microbiol 56(1):55–60. https://doi.org/10.1007/s00284-007-9038-z

    Article  CAS  PubMed  Google Scholar 

  • Smith FW (2002) The phosphate uptake mechanism. In: Food security in nutrient-stressed environments: exploiting plants’ genetic capabilities. Springer, Dordrecht, pp 235–244

    Google Scholar 

  • Sogorb MA, Vilanova E (2002) Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol Lett 128(1–3):215–228. https://doi.org/10.1016/s0378-4274(01)00543-4

    Article  CAS  PubMed  Google Scholar 

  • Sonchieu J, Benoit Ngassoum M, Bosco Tchatchueng J, Srivastava AK, Srivastava LP (2010) Survey of pesticide residues in maize, cowpea and millet from northern Cameroon: part I. Food Addit Contam 3(3):178–184

    CAS  Google Scholar 

  • Sowunmi K, Shoga SM, Adewunmi OM, Oriyomi AF, Sowunmi L. (2021) Isolation and molecular characterization of pesticide degrading bacteria in polluted soil. bioRxiv, 2020–07

    Google Scholar 

  • Srivastava AK, Kesavachandran C (2019) Health effects of pesticides, 1st edn. CRC Press, Boca Raton. https://doi.org/10.1201/9780429058219

    Book  Google Scholar 

  • Surekha Rani M, Vijaya Lakshmi K, Suvarnalatha Devi P, Jaya Madhuri R, Aruna S, Jyothi K, Narasimha G, Venkateswarlu K (2008) Isolation and characterization of a chlorpyrifos-degrading bacterium from agricultural soil and its growth response. Afr J Microbiol Res 2(2):26–31

    Google Scholar 

  • Thomashow MF, Nutter R, Montoya AL, Gordon MP, Nester EW (1980) Integration and organization of Ti plasmid sequences in crown gall tumors. Cell 19(3):729–739

    CAS  PubMed  Google Scholar 

  • Usta C (2013) Microorganisms in biological pest control—a review (bacterial toxin application and effect of environmental factors). Curr Progress Biol Res 13:287–317

    Google Scholar 

  • Vásquez M, Reyes W (2002) Degradación de Aroclor 1242 por Pseudomas sp. Biblioteca Nacional del Perú, Perú

    Google Scholar 

  • Xu L, Yi M, Yi H, Guo E, Zhang A (2018) Manure and mineral fertilization change enzyme activity and bacterial community in millet rhizosphere soils. World J Microbiol Biotechnol 34(1):1–13

    Google Scholar 

  • Yamamoto I, Casida JE (1999) Nicotinoid insecticides and the nicotinic acetylcholine receptor. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67933-2

    Book  Google Scholar 

  • Zhongli C, Shunpeng L, Guoping F (2001) Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl Environ Microbiol 67(10):4922–4925

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chittabrata Mal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hazra, S., Dey, J., Mukherjee, S., Kalam, A., Mal, C. (2023). Identification of Novel Microbial Strains for Reduced Pesticide Use in Millets. In: Pudake, R.N., Kumari, M., Sapkal, D.R., Sharma, A.K. (eds) Millet Rhizosphere . Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-99-2166-9_5

Download citation

Publish with us

Policies and ethics