Skip to main content

Biodiversity of Arbuscular Mycorrhizal Fungi and Its Impact on Millets Growth

  • Chapter
  • First Online:
Millet Rhizosphere

Abstract

Millets are popular for their nutrient richness and environmental smartness. Millets are often grown on marginal lands under rainfed conditions and are favored crop species in intercropping systems. Roots of millets are colonized by a wide range of fungi including the arbuscular mycorrhizal (AM) fungi. Diverse AM fungi associate with millets as revealed by the diversity of AM spores in the soils and through the examination of millet roots using molecular techniques. Glomus is the dominant taxa associated with millets followed by Acaulospora, Funneliformis, and Rhizophagus. AM fungal symbiosis enhance the growth and nutrient uptake of millets in a wide range of soil and environmental conditions. The response of millets to AM symbiosis happens despite the presence of an elaborate root system. However, the responsiveness of millets to AM fungal symbiosis tends to vary with species and genotypes of the same species. Nevertheless, the yield response of millets to AM fungal presence is not well explored when compared to other popular cereal crops. AM symbiosis also imparts tolerance in millet against abiotic stresses like drought and salinity and induces changes in the structure and diversity of microorganisms in the soil. Agronomic and cultivation practices like the application of fungicides and synthetic fertilizers, crop rotation, and intercropping are known to affect AM fungal symbiosis in millets. The development of appropriate strategies for efficient use of millet-AM symbioses would increase millet production under limited inputs in resource-poor regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelhalim TS, Finckh MR, Babiker AG, Oehl F (2014) Species composition and diversity of arbuscular mycorrhizal fungi in White Nile state, Central Sudan. Arch Agron Soil Sci 60:377–391

    Google Scholar 

  • Ahmad Z, Nadeem F, Wang R, Diao X, Han Y, Wang X, Li X (2018) A larger root system is coupled with contrasting expression patterns of phosphate and nitrate transporters in foxtail millet [Setaria italica (L.) Beauv.] under phosphate limitation. Front Plant Sci 9:1367. https://doi.org/10.3389/fpls.2018.01367

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmadi M, Astaraei A, Lakzian A, Emami H (2021) Study of millet (Panicum miliaceum) response to humic acid, silicon and mycorrhiza application under saline-sodic irrigation water stress. Environ Stress Crop Sci 14:823–836

    Google Scholar 

  • Alguacil MM, Lumini E, Roldan A, Salinas-Garcia JR, Bonfante P, Bianciotto V (2008) The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecol Appl 18:527–536

    CAS  PubMed  Google Scholar 

  • Alshoaibi A (2021) Improved tolerance of three Saudi pearl millet cultivars (Pennisetum spicatum) to salt stress by mycorrhiza. Phyton 90:731–745

    Google Scholar 

  • Arruda B, Herrera WF, Rojas-García JC, Turner C, Pavinato PS (2021) Cover crop species and mycorrhizal colonization on soil phosphorus dynamics. Rhizosphere 19:100396. https://doi.org/10.1016/j.rhisph.2021.100396

    Article  Google Scholar 

  • Augé RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci 84:373–381

    Google Scholar 

  • Badi OB, Abdelhalim TS, Eltayeb MM, Gorafi YS, Tsujimoto H, Taniguchi T (2019) Dominance of limited arbuscular mycorrhizal fungal generalists of Sorghum bicolor in a semi-arid region in Sudan. Soil Sci Plant Nutr 65:570–578

    CAS  Google Scholar 

  • Bagayoko M, George E, Römheld V, Buerkert A (2000) Effects of mycorrhizae and phosphorus on growth and nutrient uptake of millet, cowpea and sorghum on a west African soil. J Agric Sci 135:399–407

    Google Scholar 

  • Balakrishna AN, Lakshmipathy R, Bagyaraj DJ, Ashwin R (2017) Influence of alley copping system on AM fungi, microbial biomass C and yield of finger millet, peanut and pigeon pea. Agrofor Syst 91:487–493

    Google Scholar 

  • Balami S, Vašutová M, Košnar J, Karki R, Khadka C, Tripathi G, Cudlin P (2021) Soil fungal communities in abandoned agricultural land has not yet moved towards the seminatural forest. For Ecol Manag 491:119181. https://doi.org/10.1016/j.foreco.2021.119181

    Article  Google Scholar 

  • Baligar VC, Fageria NK, He ZL (2001) Nutrient use efficiency in plants. Commun Soil Sci Plant Anal 32:921–950

    CAS  Google Scholar 

  • Barrett G, Campbell CD, Fitter AH, Hodge A (2011) The arbuscular mycorrhizal fungus Glomus hoi can capture and transfer nitrogen from organic patches to its associated host plant at low temperature. Appl Soil Ecol 48:102–105

    Google Scholar 

  • Bates TR, Lynch JP (2001) Root hairs confer a competitive advantage under low phosphorus availability. Plant Soil 236:243–250

    CAS  Google Scholar 

  • Bei S, Xu M, Lyu X, Chen C, Li A, Qiao X (2021) Arbuscular mycorrhizal fungi enhanced coix responses to phosphorous forms but not for faba bean in intercropping systems, under controlled environment. Agron J 113:2578–2590

    CAS  Google Scholar 

  • Berruti A, Bianciotto V, Lumini E (2018) Seasonal variation in winter wheat field soil arbuscular mycorrhizal fungus communities after non-mycorrhizal crop cultivation. Mycorrhiza 28:535–548

    PubMed  Google Scholar 

  • Bielders CL, Dahiratou I, Maimouna G (2010) Contribution of arbuscular mycorrhizal fungi to pearl millet [Pennisetum glaucum (L.) R. Br.] nutrition on sahelian acid sandy soils at various levels of soil degradation. Int J Biol Chem Sci 4:924–938

    Google Scholar 

  • Bitterlich M, Franken P (2016) Connecting polyphosphate translocation and hyphal water transport points to a key of mycorrhizal functioning. New Phytol 211:1147–1149

    PubMed  Google Scholar 

  • Bitterlich M, Franken P, Graefe J (2018) Arbuscular mycorrhiza improves substrate hydraulic conductivity in the plant available moisture range under root growth exclusion. Front Plant Sci 9:301. https://doi.org/10.3389/fpls.2018.00301

    Article  PubMed  PubMed Central  Google Scholar 

  • Bose SK, Howlader P (2020) Melatonin plays multifunctional role in horticultural crops against environmental stresses: a review. Environ Exp Bot 176:104063

    CAS  Google Scholar 

  • Borde M, Dudhane M, Jite P (2011) Growth photosynthetic activity and antioxidant responses of mycorrhizal and non-mycorrhizal bajra (Pennisetum glaucum) crop under salinity stress condition. Crop Protect 30:265–271

    CAS  Google Scholar 

  • Briccoli Bati C, Santilli E, Lombardo L (2015) Effect of arbuscular mycorrhizal fungi on growth and on micronutrient and macronutrient uptake and allocation in olive plantlets growing under high total Mn levels. Mycorrhiza 25:97–108

    CAS  PubMed  Google Scholar 

  • Brooker RW, Bennett AE, Cong WF, Daniell TJ, George TS, Hallett PD, Hawes C, Iannetta PP, Jones HG, Karley AJ, Li L (2015) Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytol 206:107–117

    PubMed  Google Scholar 

  • Brück H, Sattelmacher B, Payne WA (2003) Varietal differences in shoot and rooting parameters of pearl millet on sandy soils in Niger. Plant Soil 251:175–185

    Google Scholar 

  • Burni T, Sarah S, Khan I, Nabi G, Ullah S (2017) The symbiotic response of three millet varieties to arbuscular mycorrhizal fungal (Glomus spp.) inoculation in marginal soil: implication in bio-fertilizer. J Biol Environ Sci 11:1–8

    Google Scholar 

  • Calabrese S, Pérez-Tienda J, Ellerbeck M, Arnould C, Chatagnier O, Boller T, Schüßler A, Brachmann A, Wipf D, Ferrol N, Courty PE (2016) GintAMT3–a low-affinity ammonium transporter of the arbuscular mycorrhizal Rhizophagus irregularis. Front Plant Sci 7:679. https://doi.org/10.3389/fpls.2016.00679

    Article  PubMed  PubMed Central  Google Scholar 

  • Calabrese S, Cusant L, Sarazin A, Niehl A, Erban A, Brulé D, Recorbet G, Wipf D, Roux C, Kopka J, Boller T (2019) Imbalanced regulation of fungal nutrient transports according to phosphate availability in a symbiocosm formed by poplar, sorghum, and Rhizophagus irregularis. Front Plant Sci 10:1617. https://doi.org/10.3389/fpls.2019.01617

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrenho R, Trufem SF, Bononi VL (2002) Effects of using different host plants on the detected biodiversity of arbuscular mycorrhizal fungi from an agroecosystem. Braz J Bot 25:93–101

    Google Scholar 

  • Caruso C, Maucieri C, Berruti A, Borin M, Barbera AC (2018) Responses of different Panicum miliaceum L. genotypes to saline and water stress in a marginal mediterranean environment. Agronomy 8:8. https://doi.org/10.3390/agronomy8010008

    Article  CAS  Google Scholar 

  • Casieri L, Ait Lahmidi N, Doidy J, Veneault-Fourrey C, Migeon A, Bonneau L, Courty PE, Garcia K, Charbonnier M, Delteil A, Brun A (2013) Biotrophic transportome in mutualistic plant–fungal interactions. Mycorrhiza 23:597–625

    CAS  PubMed  Google Scholar 

  • Castillo CG, Rubio R, Rouanet JL, Borie F (2006) Early effects of tillage and crop rotation on arbuscular mycorrhizal fungal propagules in an Ultisol. Biol Fertil Soil 43:83–92

    Google Scholar 

  • Ceasar SA, Hodge A, Baker A, Baldwin SA (2014) Phosphate concentration and arbuscular mycorrhizal colonisation influence the growth, yield and expression of twelve PHT1 family phosphate transporters in foxtail millet (Setaria italica). PLoS One 9:e108459. https://doi.org/10.3390/ijms17060930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra P, Singh A, Prajapat K, Rai AK, Yadav RK (2022) Native arbuscular mycorrhizal fungi improve growth, biomass yield, and phosphorus nutrition of sorghum in saline and sodic soils of the semi–arid region. Environ Exp Bot 6:104982. https://doi.org/10.1016/j.envexpbot.2022.104982

    Article  CAS  Google Scholar 

  • Channabasava A, Lakshman HC (2011) Relative efficacy of single and multiple inocula of arbuscular mycorrhizal fungi for kodo millet (Paspalum scrobiculatum L.). Karnataka J Agric Sci 24:309–311

    Google Scholar 

  • Channabasava A, Lakshman HC (2012) AM fungi and mine spoil consortium: a microbial approach for enhancing Proso millet biomass and yield. Int J Pharma Biol Sci 3:667–684

    Google Scholar 

  • Channabasava A, Lakshman HC (2015) Biodiversity of arbuscular mycorrhizal fungi in the rhizosphere of selected millets, South Western India. Nova Hedwigia 101(1/2):111–130

    Google Scholar 

  • Channabasava A, Lakshman HC, Muthukumar T (2015a) Fly ash mycorrhizoremediation through Paspalum scrobiculatum L., inoculated with Rhizophagus fasciculatus. C R Biol 338:29–39

    PubMed  Google Scholar 

  • Channabasava A, Lakshman HC, Jorquera MA (2015b) Effect of fungicides on association of arbuscular mycorrhiza fungus Rhizophagus fasciculatus and growth of Proso millet (Panicum miliaceum L). J Soil Sci Plant Nutr 15:35–45

    Google Scholar 

  • Chen W, Li J, Zhu H, Xu P, Chen J, Yao Q (2017) Arbuscular mycorrhizal fungus enhances lateral root formation in Poncirus trifoliata (L.) as revealed by RNA-Seq analysis. Front Plant Sci 8:2039. https://doi.org/10.3389/fpls.2017.02039

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen W, Ye T, Sun Q, Niu T, Zhang J (2021) Arbuscular mycorrhizal fungus alters root system architecture in Camellia sinensis L. as revealed by RNA-Seq analysis. Front Plant Sci 12:777357. https://doi.org/10.3389/fpls.2021.777357

    Article  PubMed  PubMed Central  Google Scholar 

  • Cobb AB, Wilson GW, Goad CL, Bean SR, Kaufman RC, Herald TJ, Wilson JD (2016) The role of arbuscular mycorrhizal fungi in grain production and nutrition of sorghum genotypes: enhancing sustainability through plant-microbial partnership. Agric Ecosyst Environ 233:432–440

    Google Scholar 

  • Cruz C, Egsgaard H, Trujillo C, Ambus P, Requena N, Martins-Loução MA, Jakobsen I (2007) Enzymatic evidence for the key role of arginine in nitrogen translocation by arbuscular mycorrhizal fungi. Plant Physiol 144:782–792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dhawi F, Datta R, Ramakrishna W (2018) Metabolomics, biomass and lignocellulosic total sugars analysis in foxtail millet (Setaria italica) inoculated with different combinations of plant growth promoting bacteria and mycorrhiza. Commun Plant Sci 8:8–14

    Google Scholar 

  • Dickson S (2004) The ArumParis continuum of mycorrhizal symbioses. New Phytol 163:187–200

    CAS  PubMed  Google Scholar 

  • Duponnois R, Plenchette C, Thioulouse J, Cadet P (2001) The mycorrhizal soil infectivity and arbuscular mycorrhizal fungal spore communities in soils of different aged fallows in Senegal. Appl Soil Ecol 17:239–251

    Google Scholar 

  • Fabbrin EG, Gogorcena Y, Mogor ÁF, Garmendia I, Goicoechea N (2015) Pearl millet growth and biochemical alterations determined by mycorrhizal inoculation, water availability and atmospheric CO2 concentration. Crop Pasture Sci 66:831–840

    CAS  Google Scholar 

  • Fernandez MC, Rubio G (2015) Root morphological traits related to phosphorus-uptake efficiency of soybean, sunflower, and maize. J Plant Nutr Soil Sci 178:807–815

    CAS  Google Scholar 

  • Fokom R, Teugwa Mofor C, Nana Wakam L, Ngonkeu Megapche EL, Tchameni S, Nwaga D, Rillig C, Amvam Zollo PH (2013) Glomalin, carbon, nitrogen and soil aggregate stability as affected by land use changes in the humid forest zone in South Cameroon. Appl Ecol Environ Res 11:581–592

    Google Scholar 

  • Friberg S (2001) Distribution and diversity of arbuscular mycorrhizal fungi in traditional agriculture on The Niger inland delta, Mali, West Africa. CBM: s Skriftserie 3:53–80

    Google Scholar 

  • Fusconi A (2014) Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation? Ann Bot 113:19–33

    CAS  PubMed  Google Scholar 

  • Garcia K, Chasman D, Roy S, Ané JM (2017) Physiological responses and gene co-expression network of mycorrhizal roots under K+ deprivation. Plant Physiol 173:1811–1123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gong L, Zhang H, Gan X, Zhang L, Chen Y, Nie F, Shi L, Li M, Guo Z, Zhang G, Song Y (2015) Transcriptome profiling of the potato (Solanum tuberosum L.) plant under drought stress and water-stimulus conditions. PLoS One 10:e0128041. https://doi.org/10.1371/journal.pone.0128041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    CAS  PubMed  Google Scholar 

  • Guether M, Neuhauser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P (2009) A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol 150:73–83

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta N, Gupta AK, Gaur VS, Kumar AM (2012) Relationship of nitrogen use efficiency with the activities of enzymes involved in nitrogen uptake and assimilation of finger millet genotypes grown under different nitrogen inputs. Sci World J 2012:625731. https://doi.org/10.1100/2012/625731

    Article  CAS  Google Scholar 

  • Harinikumar KM, Bagyaraj DJ (1988) Effect of crop rotation on native vesicular arbuscular mycorrhizal propagules in soil. Plant Soil 110:77–80

    Google Scholar 

  • Hijikata N, Murase M, Tani C, Ohtomo R, Osaki M, Ezawa T (2010) Polyphosphate has a central role in the rapid and massive accumulation of phosphorus in extraradical mycelium of an arbuscular mycorrhizal fungus. New Phytol 186:285–289

    CAS  PubMed  Google Scholar 

  • Hindumathi A, Reddy BN (2011) Dependency of sorghum on arbuscular mycorrhizal colonization for growth and development. J Mycol Plant Pathol 41:537–542

    Google Scholar 

  • Hossler K (2010) Nutrient cycling and the role of arbuscular mycorrhizae in created and natural wetlands of Central Ohio (Doctoral dissertation, The Ohio State University). http://rave.ohiolink.edu/etdc/view?acc_num=osu127544823

  • Htay HH, Win M, Win S (2021) Isolation and collection of arbuscular mycorrhiza (AM) fungi from ten species of weed in Yezin agricultural university campus. Pharm Innov J 10:37–46

    Google Scholar 

  • Husein M, Umami N, Pertiwiningrum A, Rahman MM, Ananta D (2022) The role of arbuscular mycorrhizal fungi density and diversity on the growth and biomass of corn and sorghum forage in trapping culture. Trop Anim Sci J 45:37–43

    Google Scholar 

  • Iqbal A, Qiang D, Zhun W, Xiangru W, Huiping G, Hengheng Z, Nianchang P, Xiling Z, Meizhen S (2020) Growth and nitrogen metabolism are associated with nitrogen-use efficiency in cotton genotypes. Plant Physiol Biochem 149:61–74

    CAS  PubMed  Google Scholar 

  • Jakobsen I, Gazey C, Abbott LK (2001) Phosphate transport by communities of arbuscular mycorrhizal fungi in intact soil cores. New Phytol 1:95–103

    Google Scholar 

  • Janeeshma E, Puthur JT (2020) Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants. Arch Microbiol 202:1–6

    CAS  PubMed  Google Scholar 

  • Jansa J, Mozafar A, Frossard E (2003) Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie 23:481–488

    CAS  Google Scholar 

  • Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168:687–696

    CAS  PubMed  Google Scholar 

  • Juhaeti T, Adisyahputra A, Hidayati N, Florina R (2021) Evaluation on foxtail millet (Setaria italica l.) responses to different light intensities and fertilizations. Berita Biol 21:313–323

    Google Scholar 

  • Kadam LB (2022) Effect of different levels of phosphate fertilizer on foxtail millet (Setaria italica (L.) Beauv) VAR-SIA-326 inoculated with VA mycorrhiza (Glomus fasciculatum). IRJPS 13:1–5

    Google Scholar 

  • Kamal R, Gusain YS, Sharma IP, Sharma S, Sharma AK (2015) Impact of arbuscular mycorrhizal fungus, Glomus intraradices, Streptomyces and Pseudomonas spp. strain on finger millet (Eleusine coracana L.) cv Korchara under water deficit condition. Afr J Biotechnol 14:3219–3227

    CAS  Google Scholar 

  • Kamali S, Mehraban A (2020) Effects of Nitroxin and arbuscular mycorrhizal fungi on the agro-physiological traits and grain yield of sorghum (Sorghum bicolor L.) under drought stress conditions. PLoS One 15:e0243824. https://doi.org/10.1371/journal.pone.0243824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandhasamy N, Ravichandran KR, Thangavelu M (2020) Interactive influence of soil and plant genotypes on mycorrhizal dependency in finger millet. J Soil Sci Plant Nutr 20:1287–1297

    CAS  Google Scholar 

  • Kobae Y, Ohmori Y, Saito C, Yano K, Ohtomo R, Fujiwara T (2016) Phosphate treatment strongly inhibits new arbuscule development but not the maintenance of arbuscule in mycorrhizal rice roots. Plant Physiol 171:566–579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koide RT (1991) Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol 117:365–386

    CAS  PubMed  Google Scholar 

  • Kone S, Kante F (2021) Diversity of arbuscular mycorrhizal fungi associated to Sorghum (Sorghum bicolor L. Moench) in soils of Sikasso region (Mali). Afr J Environ Sci Technol 15:223–229

    Google Scholar 

  • Krishna D, Sachan HK (2017) Effects of arbuscular mycorrhizal fungi on metals uptake, plant growth and yield of finger millet with increasing Zn and Cd concentrations in soil. In: Proceedings of the 7th International Contaminated Site Remediation Conference, Australia, pp 633

    Google Scholar 

  • Krishna KR, Balakrishna AN, Bagyarajf DJ (1982) Interaction between a vesicular–arbuscular mycorrhizal fungus and Streptomyces cinnamomeous and their effects on finger millet. New Phytol 92:401–405

    Google Scholar 

  • Krishna D, Deepak S, Sachan HK (2013) Role of arbuscular mycorrhizal fungi in alleviation of zinc phytotoxicity in finger millet. Progress Agric 13:98–101

    Google Scholar 

  • Kumar A, Tomer V, Kaur A, Kumar V, Gupta K (2018) Millets: a solution to agrarian and nutritional challenges. Agric Food Secur 7:1–5

    Google Scholar 

  • Lakshman HC, Channabasava A (2013) Mycorrhizoremediation of mine spoil by using foxtail millet inoculated with Rhizophagus fasciculatus: an ex-situ solid waste management. Int J Curr Sci 8:85–92

    Google Scholar 

  • Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC (2014) Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—a meta-analysis. Plant Soil 374:523–537

    CAS  Google Scholar 

  • Liu F, Xu Y, Jiang H, Jiang C, Du Y, Gong C, Wang W, Zhu S, Han G, Cheng B (2016) Systematic identification, evolution and expression analysis of the Zea mays PHT1 gene family reveals several new members involved in root colonization by arbuscular mycorrhizal fungi. Int J Mol Sci 17:930. https://doi.org/10.3390/ijms17060930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CY, Zhang F, Zhang DJ, Srivastava AK, Wu QS, Zou YN (2018) Mycorrhiza stimulates root-hair growth and IAA synthesis and transport in trifoliate orange under drought stress. Sci Rep 8:1–9

    Google Scholar 

  • López-Ortega MG, Martínez-Velázquez M, Hernández-Guzmán FJ, Mata-Espinosa MÁ, Rojas-García AR (2018) Performance and seed quality of “pearl millet” with the use of mycorrhizae Glomus intraradices and chemical fertilizers. Rev Mex Cienc Agríc 9:1514–1523

    Google Scholar 

  • Lu X, Lu X, Liao Y (2018) Effect of tillage treatment on the diversity of soil arbuscular mycorrhizal fungal and soil aggregate-associated carbon content. Front Microbiol 9:2986. https://doi.org/10.3389/fmicb.2018.02986

    Article  PubMed  PubMed Central  Google Scholar 

  • Lynch JP (2019) Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture. New Phytol 223:548–564

    PubMed  Google Scholar 

  • Maherali H (2014) Is there an association between root architecture and mycorrhizal growth response? New Phytol 204:192–200

    PubMed  Google Scholar 

  • Mathimaran N, Jegan S, Thimmegowda MN, Prabavathy VR, Yuvaraj P, Kathiravan R, Sivakumar MN, Manjunatha BN, Bhavitha NC, Sathish A, Shashidhar GC (2020) Intercropping transplanted pigeon pea with finger millet: arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria boost yield while reducing fertilizer input. Front Sustain Food Syst 4:88. https://doi.org/10.3389/fsufs.2020.00088

    Article  Google Scholar 

  • Mbinda W, Masaki H (2021) Breeding strategies and challenges in the improvement of blast disease resistance in finger millet. A current review. Front Plant Sci 11:602882. https://doi.org/10.3389/fpls.2020.602882

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehra P, Baker J, Sojka RE, Bolan N, Desbiolles J, Kirkham MB, Ross C, Gupta R (2018) A review of tillage practices and their potential to impact the soil carbon dynamics. Adv Agron 150:185–230

    Google Scholar 

  • Mishev K, Dobrev PI, Lacek J, Filepová R, Yuperlieva-Mateeva B, Kostadinova A, Hristeva T (2021) Hormonomic changes driving the negative impact of broomrape on plant host interactions with arbuscular mycorrhizal fungi. Int J Mol Sci 22:13677. https://doi.org/10.3390/ijms222413677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mofini MT, Diedhiou AG, Simonin M, Dondjou DT, Pignoly S, Ndiaye C, Min D, Vigouroux Y, Laplaze L, Kane A (2022) Cultivated and wild pearl millet display contrasting patterns of abundance and co-occurrence in their root mycobiome. Sci Rep 12:1–7

    Google Scholar 

  • Mohamad R, Khodaverdiloo H, Rezaee DY, Rasouli SM (2011) Effects of heavy metal resistant soil microbes inoculation and soil Cd concentration on growth and metal uptake of millet, couch grass and alfalfa. Afr J Microbiol Res 5:403–410

    Google Scholar 

  • Mohandas S, Chandre Gowda MJ, Manamohan M (2002) Popularization of arbuscular mycorrhizal (AM) inoculum production and application on-farm. In: XXVI international horticultural congress: sustainability of horticultural systems in the 21st century, pp 279–283

    Google Scholar 

  • Moitinho MR, Fernandes C, Truber PV, Marcelo AV, Corá JE, da Silva BE (2020) Arbuscular mycorrhizal fungi and soil aggregation in a no-tillage system with crop rotation. J Plant Nutr Soil Sci 183:482–491

    CAS  Google Scholar 

  • Mythili M, Ramalakshmi A (2022) Unraveling the distribution of AMF communities and their metabolites associated with soils of minor millets. Rhizosphere 21:100473. https://doi.org/10.1016/j.rhisph.2022.100473

    Article  Google Scholar 

  • Mythili M, Ramalakshmi A, Anandham R, Karthikeyan R (2021) Occurrence and distribution of arbuscular mycorrhizal fungi in finger millets growing tracts of Tamil Nadu, India. Pharma Innov 10:2943–2947

    Google Scholar 

  • Nagaraj K, Vanishree S, Muthukumar T (2021) Genotypic variation in response and dependency of Cajanus cajan (L.) Millsp., on arbuscular mycorrhizal fungi in a tropical Alfisol. Plant Biosyst 155:878–890

    Google Scholar 

  • Nakmee PS, Techapinyawat S, Ngamprasit S (2016) Comparative potentials of native arbuscular mycorrhizal fungi to improve nutrient uptake and biomass of Sorghum bicolor Linn. Agric Natur Res 50:173–178

    CAS  Google Scholar 

  • Ndeko AB, Founoune-Mboup H, Kane A, Cournac L (2022) Arbuscular mycorrhizal fungi alleviate the negative effect of temperature stress in millet lines with contrasting soil aggregation potential. Gesunde Pflanzen 74:53–67

    CAS  Google Scholar 

  • Ndour PM, Barry CM, Tine D, De la Fuente CC, Gueye M, Barakat M, Ortet P, Achouak W, Ndoye I, Sine B, Laplaze L (2021) Pearl millet genotype impacts microbial diversity and enzymatic activities in relation to root-adhering soil aggregation. Plant Soil 464:109–129

    CAS  Google Scholar 

  • Ndoye F, Diedhiou AG, Gueye M, Fall D, Barnaud A, Sy MO, Noba K, Diouf D, Kane A (2016) Response of white fonio (Digitaria exilis Stapf) to inoculation with different arbuscular mycorrhizal fungi under net house conditions. J Appl Biosci 103:9784–9799

    Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995) Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J Ecol 1:991–1000

    Google Scholar 

  • Pal A (2017) A study on pearl millet (Pennisetum glaucum L.) plant biochemical and histochemical changes inoculated with indigenous AM fungi under barren soil. J Plant Biotechnol 44:203–206

    Google Scholar 

  • Pal A, Pandey S (2017) Symbiosis of arbuscular mycorrhizal fungi and Pennisetum glaucum L. improves plant growth and glomalin-related soil protein in barren soil. Int J Sci Invent Today 6:783–792

    Google Scholar 

  • Park HJ, Floss DS, Levesque-Tremblay V, Bravo A, Harrison MJ (2015) Hyphal branching during arbuscule development requires reduced arbuscular mycorrhiza1. Plant Physiol 169:2774–2788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Passot S, Gnacko F, Moukouanga D, Lucas M, Guyomarc’h S, Ortega BM, Atkinson JA, Belko MN, Bennett MJ, Gantet P, Wells DM (2016) Characterization of pearl millet root architecture and anatomy reveals three types of lateral roots. Front Plant Sci 7:829. https://doi.org/10.3389/fpls.2016.00829

    Article  PubMed  PubMed Central  Google Scholar 

  • Patil SV, Bhosale AS, Khambal PD (2015) Effect of various levels of fertilizers on growth and yield of finger millet. IOSR J Agric Vet Sci 8:49–52

    Google Scholar 

  • Pérez-Tienda J, Testillano PS, Balestrini R, Fiorilli V, Azcón-Aguilar C, Ferrol N (2011) GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genet Biol 48:1044–1055

    PubMed  Google Scholar 

  • Pudake RN, Mehta CM, Mohanta TK, Sharma S, Varma A, Sharma AK (2017) Expression of four phosphate transporter genes from finger millet (Eleusine coracana L.) in response to mycorrhizal colonization and Pi stress. 3 Biotech 7(1):1–3

    Google Scholar 

  • Püschel D, Bitterlich M, Rydlová J, Jansa J (2020) Facilitation of plant water uptake by an arbuscular mycorrhizal fungus: a Gordian knot of roots and hyphae. Mycorrhiza 30:299–313

    PubMed  Google Scholar 

  • Ragupathy S, Mohankumar V, Mahadevan A (1990) Occurrence of vesicular arbuscular mycorrhizae in tropical hydrophytes. Aquat Bot 36:287–291

    Google Scholar 

  • Ramakrishnan K, Bhuvaneswari G (2014) Effect of inoculation of AM fungi and beneficial microorganisms on growth and nutrient uptake of Eleusine coracana (L.) Gaertn.(Finger millet). Int Lett Nat Sci 8:59–69

    Google Scholar 

  • Ramírez-Flores MR, Bello-Bello E, Rellán-Álvarez R, Sawers RJ, Olalde-Portugal V (2019) Inoculation with the mycorrhizal fungus Rhizophagus irregularis modulates the relationship between root growth and nutrient content in maize (Zea mays ssp. mays L.). Plant Direct 3:e00192. https://doi.org/10.1002/pld3.192

    Article  PubMed  PubMed Central  Google Scholar 

  • Rashidi S, Yousefi AR, Pouryousef M, Goicoechea N (2020) Total phenol, anthocyanin, and terpenoid content, photosynthetic rate, and nutrient uptake of Solanum nigrum L. and Digitaria sanguinalis L. as affected by arbuscular mycorrhizal fungi inoculation. Weed Biol Manage 20:95–108

    CAS  Google Scholar 

  • Rashidi S, Yousefi AR, Pouryousef M, Goicoechea N (2022) Effect of arbuscular mycorrhizal fungi on the accumulation of secondary metabolites in roots and reproductive organs of Solanum nigrum, Digitaria sanguinalis and Ipomoea purpurea. Chem Biol Technol Agric 9:1–11

    Google Scholar 

  • Rejali F, Kari Dolatabad H, Safari M, Fazlikhani F (2022) Evaluation of systemic and contact fungicides effects on symbiosis of Rhizophagus irregularis and vegetative traits of wheat and corn plants. J Soil Biol 10:81–91

    Google Scholar 

  • Reynolds HL, Hartley AE, Vogelsang KM, Bever JD, Schultz PA (2005) Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture. New Phytol 167:869–880

    CAS  PubMed  Google Scholar 

  • Riaz M, Kamran M, Fang Y, Wang Q, Cao H, Yang G, Deng L, Wang Y, Zhou Y, Anastopoulos I, Wang X (2021) Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: a critical review. J Hazard Mater 402:123919

    CAS  PubMed  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754

    Google Scholar 

  • Rillig MC, Aguilar-Trigueros CA, Bergmann J, Verbruggen E, Veresoglou SD, Lehmann A (2015) Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol 205:1385–1388

    CAS  PubMed  Google Scholar 

  • Rodríguez-Echeverría S, Teixeira H, Correia M, Timóteo S, Heleno R, Öpik M, Moora M (2017) Arbuscular mycorrhizal fungi communities from tropical Africa reveal strong ecological structure. New Phytol 213:380–390

    PubMed  Google Scholar 

  • Rosewarne GM, Smith FA, Schachtman DP, Smith SE (2007) Localization of proton-ATPase genes expressed in arbuscular mycorrhizal tomato plants. Mycorrhiza 17:249–258

    CAS  PubMed  Google Scholar 

  • Rostamza M, Chaichi MR, Jahansooz MR, Mashhadi HR, Sharifi HR (2011) Effects of water stress and nitrogen fertilizer on multi-cut forage pearl millet yield, nitrogen, and water use efficiency. Commun Soil Sci Plant Anal 42:2427–2240

    CAS  Google Scholar 

  • Saboor A, Ali MA (2021) Effects of arbuscular mycorrhizal fungi on maize (Zea mays L.) under zinc deficient and toxic field conditions. Appl Ecol Environ Res 19:2151–2169

    Google Scholar 

  • Saharan K, Schütz L, Kahmen A, Wiemken A, Boller T, Mathimaran N (2018) Finger millet growth and nutrient uptake is improved in intercropping with pigeon pea through “biofertilization” and “bioirrigation” mediated by arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria. Front Environ Sci 6:46. https://doi.org/10.3389/fenvs.2018.00046

    Article  Google Scholar 

  • Sankar GM, Mishra PK, Sharma KL, Singh SP, Nema AK, Kathmale DK, Upadhye SK, Sidhpuria MS, Osman M, Chary GR, Grace JK (2012) Efficient tillage and nutrient practices for sustainable pearl millet productivity in different soil and agro-climatic conditions. Exp Agric 48:1–20

    Google Scholar 

  • Sato T, Hachiya S, Inamura N, Ezawa T, Cheng W, Tawaraya K (2019) Secretion of acid phosphatase from extraradical hyphae of the arbuscular mycorrhizal fungus Rhizophagus clarus is regulated in response to phosphate availability. Mycorrhiza 29:599–605

    CAS  PubMed  Google Scholar 

  • Schütz L, Saharan K, Mäder P, Boller T, Mathimaran N (2022) Rate of hyphal spread of arbuscular mycorrhizal fungi from pigeon pea to finger millet and their contribution to plant growth and nutrient uptake in experimental microcosms. Appl Soil Ecol 169:104156. https://doi.org/10.1016/j.apsoil.2021.104156

    Article  Google Scholar 

  • Shao YD, Zhang DJ, Hu XC, Wu QS, Jiang CJ, Xia TJ, Gao XB, Kuča K (2018) Mycorrhiza-induced changes in root growth and nutrient absorption of tea plants. Plant Soil Environ 64:283–289

    CAS  Google Scholar 

  • Sharif M, Claassen N (2011) Action mechanisms of arbuscular mycorrhizal fungi in phosphorus uptake by Capsicum annuum L. Pedosphere 21:502–511

    CAS  Google Scholar 

  • Sharif M, Ahmad E, Sarir MS, Muhammad D, Shafi M, Bakht J (2011) Response of different crops to arbuscular mycorrhiza fungal inoculation in phosphorus-deficient soil. Commun Soil Sci Plant Anal 42:2299–2309

    CAS  Google Scholar 

  • Sharma M, Singh D, Saksena HB, Sharma M, Tiwari A, Awasthi P, Botta HK, Shukla BN, Laxmi A (2021) Understanding the intricate web of phytohormone signalling in modulating root system architecture. Int J Mol Sci 22:5508. https://doi.org/10.3390/ijms22115508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen W, Feng Z, Song H, Jin D, Fu Y, Cheng F (2022) Effects of solid waste-based soil conditioner and arbuscular mycorrhizal fungi on crop productivity and heavy metal distribution in foxtail millet (Setaria italica). J Environ Manag 313:114974. https://doi.org/10.1016/j.jenvman.2022.114974

    Article  CAS  Google Scholar 

  • Shishehbor M, Madani H, Ardakani MR (2013) Effect of vermicompost and biofertilizers on yield and yield components of common millet (Panicum miliaceum). Ann Biol Res 4:174–180

    Google Scholar 

  • Sidar S, Thakur AK, Kumar M, Chandrakar T, Mukherjee SC (2017) An impact of the different tillage and conservation farming on plant growth and selected features of finger millet (Eleusine coracana L.) at Bastar plateau zone of Chhattisgarh, India. Int J Curr Microbiol Appl Sci 6:1476–1488

    Google Scholar 

  • Singh D, Mathimaran N, Boller T, Kahmen A (2019) Bioirrigation: a common mycorrhizal network facilitates the water transfer from deep-rooted pigeon pea to shallow-rooted finger millet under drought. Plant Soil 440:277–292

    CAS  Google Scholar 

  • Singh D, Mathimaran N, Boller T, Kahmen A (2020) Deep-rooted pigeon pea promotes the water relations and survival of shallow-rooted finger millet during drought—despite strong competitive interactions at ambient water availability. PLoS One 15:e0228993. https://doi.org/10.1371/journal.pone.0228993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Smith FA, Smith SE (2011) What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants? Plant Soil 348:63–79

    CAS  Google Scholar 

  • Smith SE, Facelli E, Pope S, Andrew Smith F (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20

    CAS  Google Scholar 

  • Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY, O’Donnell K, Roberson RW, Taylor TN, Uehling J, Vilgalys R, White MM, Stajich JE (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–1046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava K, Mehta CM, Sharma AK (2014) Effect of different Glomus species of common habitat on growth and nutrient content of different genotypes of finger millet (Eleusine coracana L.). J Sci Res Rev 3:50–55

    Google Scholar 

  • Suharno S, Sancayaningsih RP, Soetarto ES, Kasiamdari RS (2021) The growth response of pokem (Setaria italica L.) inoculated with arbuscular mycorrhizal fungi (AMF) from tailings area. J Degrade Min Land Manage 8:2873–2880

    Google Scholar 

  • Sukumar P, Legue V, Vayssieres A, Martin F, Tuskan GA, Kalluri UC (2013) Involvement of auxin pathways in modulating root architecture during beneficial plant–microorganism interactions. Plant Cell Environ 36:909–919

    CAS  PubMed  Google Scholar 

  • Sun XG, Tang M (2013) Effect of arbuscular mycorrhizal fungi inoculation on root traits and root volatile organic compound emissions of Sorghum bicolor. S Afr J Bot 88:373–379

    CAS  Google Scholar 

  • Sun X, Shi J, Ding G (2017) Combined effects of arbuscular mycorrhiza and drought stress on plant growth and mortality of forage sorghum. Appl Soil Ecol 119:384–391

    Google Scholar 

  • Sunilkumar CP, Garampalli HR (2010) Diversity of arbuscular mycorrhizal fungi in agricultural fields of Hassan District. World J Agric Sci 6:728–734

    Google Scholar 

  • Symanczik S, Lehmann MF, Wiemken A, Boller T, Courty PE (2018) Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by Sorghum bicolor under drought. Mycorrhiza 28:779–785

    CAS  PubMed  Google Scholar 

  • Tewari L, Johri BN, Tandon SM (1993) Host genotype dependency and growth enhancing ability of VA-mycorrhizal fungi for Eleusine coracana (finger millet). World J Microbiol Biotechnol 9:191–195

    CAS  PubMed  Google Scholar 

  • Thangaraj K, Li J, Mei H, Hu S, Han R, Zhao Z, Chen X, Li X, Kamatchi Reddiar D (2022) Mycorrhizal colonization enhanced Sorghum bicolor tolerance under soil water deficit conditions by coordination of proline and reduced glutathione (GSH). J Agric Food Chem 70:4243–4255

    CAS  PubMed  Google Scholar 

  • Tian L, Chen P, Gao Z, Gao X, Feng B (2022) Deciphering the distinct mechanisms shaping the broomcorn millet rhizosphere bacterial and fungal communities in a typical agricultural ecosystem of northern China. Plant Soil 16:1–6

    Google Scholar 

  • Torrecillas E, Alguacil MM, Roldan A (2012) Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous plant species in semiarid Mediterranean prairies. Appl Environ Microbiol 78:6180–6186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tyagi J, Sultan E, Mishra A, Kumari M, Pudake RN (2017a) The impact of AMF symbiosis in alleviating drought tolerance in field crops. In: Mycorrhiza-nutrient uptake, biocontrol, ecorestoration. Springer, pp 211–234

    Google Scholar 

  • Tyagi J, Varma A, Pudake RN (2017b) Evaluation of comparative effects of arbuscular mycorrhiza (Rhizophagus intraradices) and endophyte (Piriformospora indica) association with finger millet (Eleusine coracana) under drought stress. Eur J Soil Biol 81:1–10

    CAS  Google Scholar 

  • Tyagi J, Shrivastava N, Sharma AK, Varma A, Pudake R (2021) Effect of Rhizophagus intraradices on growth and physiological performance of finger millet (Eleusine coracana L.) under drought stress. Plant Sci Today 8:912–923

    CAS  Google Scholar 

  • Udaiyan K, Greep S, Muthukumar T, Chitra A (1999) Effect of fumigation and pesticide drenches on VAM status and growth in cereals. J Environ Biol 20:167–176

    CAS  Google Scholar 

  • Utaile YU, Van Geel M, Muys B, Cheche SS, Helsen K, Honnay O (2021) Woody encroachment of an east-African savannah ecosystem alters its arbuscular mycorrhizal fungal communities. Plant Soil 464:303–320

    CAS  Google Scholar 

  • Veiga RS, Jansa J, Frossard E, van der Heijden MG (2011) Can arbuscular mycorrhizal fungi reduce the growth of agricultural weeds? PLoS One 6:e27825. https://doi.org/10.1371/journal.pone.0027825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Shi J, Xie Q, Jiang Y, Yu N, Wang E (2017) Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol Plant 10:1147–1158

    CAS  PubMed  Google Scholar 

  • Wang J, Fu Z, Ren Q, Zhu L, Lin J, Zhang J, Cheng X, Ma J, Yue J (2019) Effects of arbuscular mycorrhizal fungi on growth, photosynthesis, and nutrient uptake of Zelkova serrata (Thunb.) Makino seedlings under salt stress. Forests 10:186–101

    Google Scholar 

  • Watts-Williams SJ, Emmett BD, Levesque-Tremblay V, MacLean AM, Sun X, Satterlee JW, Fei Z, Harrison MJ (2019) Diverse Sorghum bicolor accessions show marked variation in growth and transcriptional responses to arbuscular mycorrhizal fungi. Plant Cell Environ 42:1758–1774

    CAS  PubMed  Google Scholar 

  • Watts-Williams SJ, Nguyen TD, Kabiri S, Losic D, McLaughlin MJ (2020) Potential of zinc-loaded graphene oxide and arbuscular mycorrhizal fungi to improve the growth and zinc nutrition of Hordeum vulgare and Medicago truncatula. Appl Soil Ecol 150:103464. https://doi.org/10.1016/j.apsoil.2019.103464

    Article  Google Scholar 

  • Watts-Williams SJ, Gill AR, Jewell N, Brien CJ, Berger B, Tran BT, Mace E, Cruickshank AW, Jordan DR, Garnett T, Cavagnaro TR (2022) Enhancement of sorghum grain yield and nutrition: a role for arbuscular mycorrhizal fungi regardless of soil phosphorus availability. Plants People Planet 4:143–156

    Google Scholar 

  • Wilkes TI, Warner DJ, Edmonds-Brown V, Davies KG, Denholm I (2021) Zero tillage systems conserve arbuscular mycorrhizal fungi, enhancing soil glomalin and water stable aggregates with implications for soil stability. Soil Syst 5:4. https://doi.org/10.3390/soilsystems5010004

    Article  CAS  Google Scholar 

  • Wu QS, He XH, Zou YN, Liu CY, Xiao J, Li Y (2012) Arbuscular mycorrhizas alter root system architecture of citrus tangerine through regulating metabolism of endogenous polyamines. Plant Growth Regul 68:27–35

    CAS  Google Scholar 

  • Yang SY, Grønlund M, Jakobsen I, Grotemeyer MS, Rentsch D, Miyao A, Hirochika H, Kumar CS, Sundaresan V, Salamin N, Catausan S (2012) Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the phosphate transporter1 gene family. Plant Cell 24:4236–4251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang P, Luo Y, Gao Y, Gao X, Gao J, Wang P, Feng B (2020) Soil properties, bacterial and fungal community compositions and the key factors after 5-year continuous monocropping of three minor crops. PLoS One 15:e0237164. https://doi.org/10.1371/journal.pone.0237164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Q, Wang LR, Zhu HH, Chen JZ (2009) Effect of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings. Sci Hortic 121:458–461

    Google Scholar 

  • Yousefi F, Jabbarzadeh Z, Amiri J, Rasouli-Sadaghiani MH (2019) Response of roses (Rosa hybrida L. ‘Herbert Stevens’) to foliar application of polyamines on root development, flowering, photosynthetic pigments, antioxidant enzymes activity and NPK. Sci Rep 9:1–11

    Google Scholar 

  • Zhang H, Wei S, Hu W, Xiao L, Tang M (2017) Arbuscular mycorrhizal fungus Rhizophagus irregularis increased potassium content and expression of genes encoding potassium channels in Lycium barbarum. Front Plant Sci 8:440. https://doi.org/10.3389/fpls.2017.00440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Wang P, Zou YN, Wu QS, Kuča K (2019a) Effects of mycorrhizal fungi on root-hair growth and hormone levels of taproot and lateral roots in trifoliate orange under drought stress. Arch Agron Soil Sci 65:1316–1330

    CAS  Google Scholar 

  • Zhang S, Lehmann A, Zheng W, You Z, Rillig MC (2019b) Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis. New Phytol 222:543–555

    CAS  PubMed  Google Scholar 

  • Zhang HS, Zhou MX, Zai XM, Zhao FG, Qin P (2020) Spatio-temporal dynamics of arbuscular mycorrhizal fungi and soil organic carbon in coastal saline soil of China. Sci Rep 10:1–13

    Google Scholar 

  • Zhao R, Guo W, Bi N, Guo J, Wang L, Zhao J, Zhang J (2015) Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress. Appl Soil Ecol 88:41–49

    Google Scholar 

  • Zhu Y, Xiong JL, Lü GC, Asfa B, Wang ZB, Li PF, Xiong YC (2015) Effects of arbuscular mycorrhizal fungi and plant symbiosis on plant water relation and its mechanism. Acta Ecol Sin 35:2419–2427

    Google Scholar 

  • Zhu X, Song F, Liu S, Liu F (2016) Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2. Mycorrhiza 26:133–140

    CAS  PubMed  Google Scholar 

  • Zou YN, Wang P, Liu CY, Ni QD, Zhang DJ, Wu QS (2017) Mycorrhizal trifoliate orange has greater root adaptation of morphology and phytohormones in response to drought stress. Sci Rep 7:1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muthukumar, T., Koshila Ravi, R. (2023). Biodiversity of Arbuscular Mycorrhizal Fungi and Its Impact on Millets Growth. In: Pudake, R.N., Kumari, M., Sapkal, D.R., Sharma, A.K. (eds) Millet Rhizosphere . Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-99-2166-9_3

Download citation

Publish with us

Policies and ethics