Skip to main content

Impact of Rhizosphere Ecology on Nitrogen Fixation in Millets

  • Chapter
  • First Online:
Millet Rhizosphere

Abstract

Millets are prime underutilized nutraceutical crops that have potential to substitute staple crops. The agro ecological characteristics and nutritional qualities of millets are superior to those of major cereals, which make them efficient crops to meet immediate food security needs. A plant’s normal functioning is dependent on the condition of the soil, as it is a reservoir of water and nutrients. The rhizosphere is the area around a plant's roots, and there are complex relationships among the biotic and abiotic communities in this region. Microorganisms that comprise the rhizosphere microbiome include archaea, viruses, fungi, bacteria, and eukaryotic organisms which occupy a compact region of soil near the roots of plants. Symbiosis between plants and microbes has long been recognized as a helpful and important part of sustainable agriculture. Rhizospheric zones contain a wide variety of microbial populations. It is not just that different microbes interact, but they also have an impact on the host. The rhizosphere of millet is an important habitat for beneficial microbes, providing nutrition to plants and maintaining soil health. Rhizobacteria, nitrogen-fixing bacteria, arbuscular mycorrhizal fungi, and phosphate solubilizers and other micro- and macro-organisms make up the microbial community of millet crops. The rhizosphere of millets was dominated by Actinobacteria, Proteobacteria, Acidobacteria, Enterobacter, Pantoea, Klebsiella, and Arthrobacter. Among them species such as Chloroflexi Pseudomonas Pseudomonas fluorescens, Enterobacter hormaechei, and Pseudomonas migulae were mostly present. Certain microorganisms are involved in the biological nitrogen fixation, using nitrogenase enzyme, these organisms convert atmospheric nitrogen into ammonia. A plant’s rhizosphere harbors microorganisms that are capable of reducing atmospheric nitrogen to ammonia. In root zones, beneficial microbes are found to aid in the formation of root hairs, the increase of biomass, and a better growth rate. In this chapter, we will have a look at millets and the role of rhizospheric microbes associated with them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alawiye TT, Babalola OO (2019) Bacterial diversity and community structure in typical plant rhizosphere. Diversity 11(10):179

    CAS  Google Scholar 

  • Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20(6):642–650

    CAS  PubMed  Google Scholar 

  • Barra Caracciolo A, Terenzi V (2021) Rhizosphere microbial communities and heavy metals. Microorganisms 9(7):1462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486

    CAS  PubMed  Google Scholar 

  • Berg G, Rybakova D, Fischer D, Cernava T, Vergès MC, Charles T, Chen X, Cocolin L, Eversole K, Corral GH, Kazou M (2020) Microbiome definition re-visited: old concepts and new challenges. Microbiome 8:1–22

    Google Scholar 

  • Bouton JH, Smith RL, Schank SC, Burton GW, Tyler ME, Littell RC, Gallaher RN, Quesenberry KH (1979) Response of pearl millet inbreds and hybrids to inoculation with Azospirillum brasilense. Crop Sci 19(1):12–16

    Google Scholar 

  • Brouder SM, Volenec JJ (2020) Mineral nutrient acquisition and metabolism. Forages Sci Grassland Agric 2:85–111

    Google Scholar 

  • Channabasava A, Lakshman HC (2013) Additive effect of microbial inoculation on Barnyard millet. Int J Recent Sci Res 4:115–118

    Google Scholar 

  • Cheng M, Xiao C, Xie Y (2021) Shedding light on the role of chemical bond in catalysis of nitrogen fixation. Adv Mater 33(41):2007891

    CAS  Google Scholar 

  • Choudhary R, Rawat G, Kumar V, Kumar V (2020) Diversity and function of microbes associated with rhizosphere of Finger Millet (Eleusine coracana). In: Sharma SK, Singh UB, Sahu PK, Singh HV, Sharma PK (eds) Rhizosphere microbes. Microorganisms for sustainability, vol 23. Springer, Singapore. https://doi.org/10.1007/978-981-15-9154-9_17

    Chapter  Google Scholar 

  • Colla G, Hoagland L, Ruzzi M, Cardarelli M, Bonini P, Canaguier R, Rouphael Y (2017) Biostimulant action of protein hydrolysates: unraveling their effects on plant physiology and microbiome. Front Plant Sci 8:2202

    PubMed  PubMed Central  Google Scholar 

  • Dutta S, Podile AR (2010) Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Crit Rev Microbiol 36(3):232–244

    PubMed  Google Scholar 

  • El-Beltagy A, Madkour M (2012) Impact of climate change on arid lands agriculture. Agric Food Security 1(1):1–12

    Google Scholar 

  • Igiehon NO, Babalola OO (2018) Rhizosphere microbiome modulators: contributions of nitrogen fixing bacteria towards sustainable agriculture. Int J Environ Res Public Health 15(4):574

    PubMed  PubMed Central  Google Scholar 

  • Jespersen D, Huang B (2015) Proteins associated with heat-induced leaf senescence in creeping bentgrass as affected by foliar application of nitrogen, cytokinins, and an ethylene inhibitor. Proteomics 15(4):798–812

    CAS  PubMed  Google Scholar 

  • Jin T, Wang Y, Huang Y, Xu J, Zhang P, Wang N, Liu X, Chu H, Liu G, Jiang H, Li Y (2017) Taxonomic structure and functional association of foxtail millet root microbiome. Gigascience 6:1–12. https://doi.org/10.1093/gigascience/gix089

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamal R, Gusain YS, Sharma IP, Sharma S, Sharma AK (2015) Impact of arbuscular mycorrhizal fungus, Glomus intraradices, Streptomyces and Pseudomonas spp. strain on finger millet (Eleusine coracana L.) cv Korchara under water deficit condition. Afr J Biotechnol 14(48):3219–3227

    CAS  Google Scholar 

  • Kapulnik Y, Okon Y, Kigel J, Nur I, Henis Y (1981) Effects of temperature, nitrogen fertilization, and plant age on nitrogen fixation by Setaria italica inoculated with Azospirillum brasilense (strain cd). Plant Physiol 68(2):340–343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khatoon Z, Huang S, Rafique M, Fakhar A, Kamran MA, Santoyo G (2020) Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. J Environ Manag 273:111118

    CAS  Google Scholar 

  • Khatri D, Durgapal A, Joshi PK (2016) Biofertilization enhances productivity and nutrient uptake of foxtail millet plants. J Crop Improvement 30(1):32–46

    Google Scholar 

  • Kumar S, Suyal DC, Bhoriyal M, Goel R (2018) Plant growth promoting potential of psychrotolerant Dyadobacter sp. for pulses and finger millet and impact of inoculation on soil chemical properties and diazotrophic abundance. J Plant Nutr 41(8):1035–1046

    CAS  Google Scholar 

  • Lindström K, Mousavi SA (2020) Effectiveness of nitrogen fixation in rhizobia. Microb Biotechnol 13(5):1314–1335

    PubMed  Google Scholar 

  • Liu TY, Ye N, Song T, Cao Y, Gao B, Zhang D, Zhu F, Chen M, Zhang Y, Xu W, Zhang J (2019) Rhizosheath formation and involvement in foxtail millet (Setaria italica) root growth under drought stress. J Integr Plant Biol 61(4):449–462

    PubMed  Google Scholar 

  • Mącik M, Gryta A, Frąc M (2020) Biofertilizers in agriculture: an overview on concepts, strategies and effects on soil microorganisms. Adv Agron 162:31–87

    Google Scholar 

  • Manjunatha BS, Sangeeta P, Chetana A, Rathi MS (2016) Effect of osmotic stress on growth and plant growth promoting activities of osmotolerant endophytic bacteria from pearl millet. Environ Ecol 34(3B):1223–1228

    Google Scholar 

  • Middleton H, Yergeau É, Monard C, Combier JP, El Amrani A (2021) Rhizospheric plant–microbe interactions: miRNAs as a key mediator. Trends Plant Sci 26(2):132–141

    CAS  PubMed  Google Scholar 

  • Mus F, Alleman AB, Pence N, Seefeldt LC, Peters JW (2018) Exploring the alternatives of biological nitrogen fixation. Metallomics 10(4):523–538

    CAS  PubMed  Google Scholar 

  • Mushtaq NU, Saleem S, Rasool A, Shah WH, Hakeem KR, Rehman RU (2021) Salt stress threshold in millets: perspective on cultivation on marginal lands for biomass. Phyton 90(1):51

    Google Scholar 

  • Muthamilarasan M, Prasad M (2021) Small millets for enduring food security amidst pandemics. Trends Plant Sci 26(1):33–40

    CAS  PubMed  Google Scholar 

  • Ndour PM, Gueye M, Barakat M, Ortet P, Bertrand-Huleux M, Pablo AL, Dezette D, Chapuis-Lardy L, Assigbetsé K, Kane NA, Vigouroux Y (2017) Pearl millet genetic traits shape rhizobacterial diversity and modulate rhizosphere aggregation. Front Plant Sci 8:1288

    PubMed  PubMed Central  Google Scholar 

  • Ndour PM, Barry CM, Tine D, De la Fuente CC, Gueye M, Barakat M, Ortet P, Achouak W, Ndoye I, Sine B, Laplaze L (2021) Pearl millet genotype impacts microbial diversity and enzymatic activities in relation to root-adhering soil aggregation. Plant Soil 464(1):109–129

    CAS  Google Scholar 

  • Niu X, Song L, Xiao Y, Ge W (2018) Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front Microbiol 8:2580

    PubMed  PubMed Central  Google Scholar 

  • Nwachukwu BC, Babalola OO (2021) Perspectives for sustainable agriculture from the microbiome in plant rhizosphere. Plant Biotechnol Reports 15(3):259–278

    CAS  Google Scholar 

  • Okon Y, Heytler PG, Hardy RWF (1983) N2 fixation by Azospirillum brasilense and its incorporation into host Setaria italica. Appl Environ Microbiol 46(3):694–697

    CAS  PubMed  PubMed Central  Google Scholar 

  • Opole R (2019) Opportunities for enhancing production, utilization and marketing of Finger Millet in Africa. Afr J Food Agric Nutr Dev 19(1):13,863–13,882

    CAS  Google Scholar 

  • Prabha R, Singh DP, Gupta S, Gupta VK, El-Enshasy HA, Verma MK (2019) Rhizosphere metagenomics of Paspalum scrobiculatum l. (kodo millet) reveals rhizobiome multifunctionalities. Microorganisms 7(12):608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raffi MM, Charyulu PB (2012) Nitrogen fixation by the native Azospirillum spp. isolated from rhizosphere and non-rhizosphere of foxtail millet. Asian J Biol Life Sci 1(3):213–218

    CAS  Google Scholar 

  • Ramakrishnan K, Bhuvaneswari G (2014) Effect of inoculation of am fungi and beneficial microorganisms on growth and nutrient uptake of Eleusine coracana (L.) Gaertn. (Finger millet). Int Lett Nat Sci 8(2)

    Google Scholar 

  • Ray P, Lakshmanan V, Labbé JL, Craven KD (2020) Microbe to microbiome: A paradigm shift in the application of microorganisms for sustainable agriculture. Front Microbiol 11:622926

    PubMed  PubMed Central  Google Scholar 

  • Robles-Porchas GR, Gollas-Galván T, Martínez-Porchas M, Martínez-Cordova LR, Miranda-Baeza A, Vargas-Albores F (2020) The nitrification process for nitrogen removal in biofloc system aquaculture. Rev Aquaculture 12(4):2228–2249

    Google Scholar 

  • Saleem S, Mushtaq NU, Shah WH, Rasool A, Hakeem KR, Rehman RU (2021) Morpho-physiological, biochemical and molecular adaptation of millets to abiotic stresses: a review. Phyton 90(5):1363

    Google Scholar 

  • Sampath P, Reddy KR, Reddy CV, Shetti NP, Kulkarni RV, Raghu AV (2020) Biohydrogen production from organic waste–a review. Chem Eng Technol 43(7):1240–1248

    CAS  Google Scholar 

  • Singh D, Raghuvanshi K, Pandey SK, George PJ (2016) Effect of biofertilizers on growth and yield of pearl millet (Pennisetum glaucum L.). Res Environ Life Sci 9(3):385–386

    CAS  Google Scholar 

  • Singh VS, Tripathi P, Pandey P, Singh DN, Dubey BK, Singh C, Singh SP, Pandey R, Tripathi AK (2019) Dicarboxylate transporters of Azospirillum brasilense Sp7 play an important role in the colonization of finger millet (Eleusine coracana) roots. Mol Plant-Microbe Interact 32(7):828–840

    CAS  PubMed  Google Scholar 

  • Tian L, Wang Y, Yang J, Zhang L, Feng B (2022) Rhizosphere bacterial community structure of three minor grain crops: a case-study from paired field sites in northern China. Land Degradation Development 33(1):104–116

    Google Scholar 

  • Tilak KV, Subba Rao NS (1987) Association of Azospirillum brasilense with pearl millet (Pennisetum americanum (L.) Leeke). Biol Fertil Soils 4(1):97–102

    Google Scholar 

  • Togas R, Yadav LR, Choudhary SL, Shisuvinahalli GV (2017) Effect of Azotobacter on growth, yield and quality of pearl millet. J Pharmacogn Phytochem 6(4):889–891

    CAS  Google Scholar 

  • Troitsky B, Zhu DZ, Loewen M, van Duin B, Mahmood K (2019) Nutrient processes and modeling in urban stormwater ponds and constructed wetlands. Can Water Resour J/Revue canadienne des ressources hydriques 44(3):230–247

    Google Scholar 

  • Vijayalakshmi NR, Swamy M (2019) Morphological and biochemical characterization of Azospirillum isolates from rhizoplane of foxtail millet [Setaria italica (L.) Beauv.]. J Pharmacogn Phytochem 8(1):114–118

    Google Scholar 

  • Wani SP, Chandrapalaih S, Zambre MA, Lee KK (1988) Association between N2-fixing bacteria and pearl millet plants: responses, mechanisms and persistence. Plant Soil 110(2):289–302

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mushtaq, N.U., Saleem, S., Tahir, I., Rehman, R.U. (2023). Impact of Rhizosphere Ecology on Nitrogen Fixation in Millets. In: Pudake, R.N., Kumari, M., Sapkal, D.R., Sharma, A.K. (eds) Millet Rhizosphere . Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-99-2166-9_10

Download citation

Publish with us

Policies and ethics