Skip to main content

Sustainable Energy via Thermochemical and Biochemical Conversion of Biomass Wastes for Biofuel Production

  • Chapter
  • First Online:
Transportation Energy and Dynamics

Abstract

Environmental pollution is one of the major disadvantages of fossil fuel and their derivatives, but alternative energy resources have performed better in this area. A well-known example within these alternative energy sources that can increase total available energy for human’s consumption is biomass, and it has been proven to be the most important renewable energy source. Its benefits include reduced emission, ease of growth (agricultural materials), more available when compared to non-renewable sources of energy and can be directly used by local methods. Biomass wastes heating is a major energy generation process. Processes that use heat on biomass wastes to generate energy are termed thermochemical conversion processes. The use of wood that store chemical energy in cooking is as far back as the creation of the world. Thermochemical conversion of biomass releases products which are extremely best when compared with other renewable energy source finding usefulness in automobile, power, chemical, production, and biomaterials industries. Pyrolysis is a heating process whereby carbon-based matter (organic material) such as lignocellulosic agricultural waste is heated to 450 °C and above in a non-O2 atmosphere, e.g., N2 atmosphere. Oxygen or air supports biomass combustion to generate heat, steam, and electricity. Gasification occurs at > 650 °C; it is a method of converting biomass waste into energy with the sole purpose of generating syngas useful for combustion, heating, and electricity generation. Liquefaction is a method of converting coal/biomass to petroleum through series of chemical reactions. Bio-oil, syngas, and char are useful products with stored chemical energy obtained from via thermochemical conversion. Biochemical conversion of biomass refers to the gradual and continuous release of biofuel from biomass waste through the activity of microorganisms and enzymes. Thermal and biochemical conversions are suitable processes to tap unused energy in largely available lignocellulosic biomass wastes to reduce reliance on the use of non-renewable fossil fuels as source of energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GHG:

Greenhouse gases

FC:

Fixed carbon

AC:

Ash content

VM:

Volatile matter

BTL:

Biomass to liquid

HHV:

Higher heating value

NMOCs:

Non-methane organic molecules in anaerobic circumstances (NMOCs)

MC:

Moisture content

HTG:

Hydrothermal gasification

HTL:

Hydrothermal liquefaction

References

  1. Cherubini, F.: The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manage. 51(7), 1412–1421 (2010)

    Article  Google Scholar 

  2. Witcoff, H.A., Reuben, B.G.: Industrial Organic Chemicals, John Wiley & Sons, (1996)

    Google Scholar 

  3. Clark, H.J., Deswarte, E.I.F.: The Biorefinery Concept–An Integrated Approach. John Wiley & Sons (2008)

    Google Scholar 

  4. Hubbert: Historical studies in the natural sciences 44(1), pp. 37–79. ISSN 1939–1811, electronic ISSN 1939–182X (1956)

    Google Scholar 

  5. Mousdale, D. M.: Biofuels: biotechnology, chemistry, and Sustainable development. CRC Press, pp. 328, USA, (2008)

    Google Scholar 

  6. Energy Information Administration (EIA), Annual Energy Outlook (2016)

    Google Scholar 

  7. Szulczyk, K.R.: Which is a better transportation fuel—butanol or ethanol? Int. J. Energy Environ. 1(1), (2010)

    Google Scholar 

  8. Fernando, S., Adhikari, S., Chandrapal, C., Murali, N.: Biorefineries: Current status, challenges, and future direction. Energy Fuels 20, 1727–1737 (2006)

    Article  Google Scholar 

  9. Naik, S.N., Goud, V.V., Rout, P.K., Dalai, A.K.: Production of first and second generation biofuels: A comprehensive review. Renew. Sustain. Energy Rev. 14, 578–597 (2010)

    Article  Google Scholar 

  10. Zilberman, D., Hochman, G., Rajagopal, D., Sexton, S., Timilsina, G.: The impact of biofuels on commodity food prices: Assessment of findings. Am. J. Agr. Econ. 95(2), 275–281 (2013)

    Article  Google Scholar 

  11. Thompson, P.B.: The agricultural ethics of biofuels: the food vs. fuel debate. Agriculture. 2, 339–358 (2012)

    Article  Google Scholar 

  12. Rosillo-Calle, F.: Food versus fuel: toward a new paradigm—The need for a holistic approach. ISRN Renew. Energy (2012)

    Google Scholar 

  13. Cheng, S., Zhu, S.: Lignocellulosic feedstock biorefinery—the future of the chemical and energy industry. BioResources 4(2), 456–457 (2009)

    Google Scholar 

  14. Menon, V., Rao, M.: Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 38(4), 522–550 (2012)

    Article  Google Scholar 

  15. Adeoye, A.O., Quadri, R.O., Lawal, O.S.: Physicochemical assessment, pyrolysis and thermal characterization of Albizia Zygia Tree Sawdust. Int. J. Nanotechnol. Nanomed. 7(1), 91–99 (2022)

    Google Scholar 

  16. Adeoye, A.O., Quadri, R.O., Lawal, O.S.: Biomass pyrolysis in the context of Nigeria's oil and gas: An overview. Int. J. Ambient Energy (In press) (2023)

    Google Scholar 

  17. Sharma, S.K., Lee, J.: Design and Development of Smart Semi Active Suspension for Nonlinear Rail Vehicle Vibration Reduction. Int. J. Struct. Stab. Dyn. 20, 2050120 (2020). https://doi.org/10.1142/S0219455420501205

  18. Bhardawaj, S., Sharma, R.C., Sharma, S.K.: Development of multibody dynamical using MR damper based semi-active bio-inspired chaotic fruit fly and fuzzy logic hybrid suspension control for rail vehicle system. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 234, 723–744 (2020). https://doi.org/10.1177/1464419320953685

  19. Liu, H., Ma, M., Xie, X.: New materials from solid residues for investigation the mechanism of biomass hydrothermal liquefaction. Ind. Crops Prod. 108, 63–71 (2017).https://doi.org/10.1016/j.indcrop.2017.06.026

  20. Adeoye, A.O., Quadri, R.O., Lawal, O.S.: Channeling biomass waste as an alternative industrial and domestic energy with pollution effects mitigation in Nigeria: An overview. Int. J. Nanotechnol. Nanomed. 7(1), 78–90 (2022)

    Google Scholar 

  21. Saleem, M.: Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source. Heliyon 48(2), e08905 (2022). https://doi.org/10.1016/j.heliyon.2022.e08905.PMID:35198772;PMCID:PMC8841379

  22. Houghton R.A. Biomass. Encyclopedia of Ecology. pp. 448–453 (2008)

    Google Scholar 

  23. Chen, H., Wang L.: Technologies for biochemical conversion of biomass. Elsevier Inc., (2017)

    Google Scholar 

  24. Demirbas, A.: Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manage. 42, 1357–1378 (2001).https://doi.org/10.1016/S0196-8904(00)00137-0

  25. Zhao, X., Zhang, L., Liu, D.: Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioproducts and Biorefining 6(4), 465–482 (2012a)

    Google Scholar 

  26. Sánchez, Ó.J., Cardona, C.A.: Trends in biotechnological production of fuel ethanol from different feedstocks. Biores. Technol. 99(13), 5270–5295 (2008)

    Article  Google Scholar 

  27. Vaibhav, D., Thallada, B.A.: Comprehensive review on the pyrolysis of lignocellulosic biomass. Renew. Energ. 129, 695–716 (2018)

    Article  Google Scholar 

  28. Huber, G.W., Iborra, S., Corma, A.: Synthesis of transportation fuels from biomass: chemistry, catalyst, and engineering. Chem. Revol. 106, 4044–4098 (2006)

    Article  Google Scholar 

  29. Tong, X., Ma, Y., Li Y.: Biomass into chemicals: Conversion of sugars to furan derivatives by catalytic processes”, Appl. Catal. A Gen 385 (1–2), 1–13, (2010). https://doi.org/10.1016/j.apcata.2010.06.049

  30. Balat, M., Balat, M., Kırtay, E., Balat, H.: Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1 : Pyrolysis systems, Energy Convers. Manage. 50(12), 3147–3157, (2009). https://doi.org/10.1016/j.enconman.2009.08.014

  31. Himmel, M.E., Ding, S.Y., Johnson, D.K., Adney, W.S., Nimlos M.R., Brady, J.W., Foust, T.D.: Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 315 (2007)

    Google Scholar 

  32. Mosier, N., Wyman, C., Dale, B.: Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol. 96, 673–686 (2005)

    Google Scholar 

  33. Adeoye, A.O., Quadri, R.O., Lawal, O.S.: Assessment of biofuel potential of tenera palm kernel shell via fixed bed pyrolysis and thermal characterization, Results in Surfaces and Interfaces. 9(1), 100091(2022). https://doi.org/10.1016/j.rsurfi.2022.100091

  34. Demirbas, A.: Biorefineries: For biomass upgrading facilities. Springer (2010).https://doi.org/10.1007/978-1-84882-721-9

  35. Sharma, A., Pareek, V., Zhang D.: Biomass pyrolysis—A review of modelling, process parameters and catalytic studies. Renew. Sustain. Energy Rev. 50, 1081–1096, (2015). https://doi.org/10.1016/j.rser.2015.04.193

  36. Hayes, D.J.M.: Biomass composition and its relevance to biorefining. In The Role of Catalysis for the Sustainable Production of Biofuels and Bio-chemicals, pp. 27–65. Elsevier B.V. (2013)

    Google Scholar 

  37. Tekin, K., Karagoz, S., Bektaş, S.: A review of hydrothermal biomass processing. Renew. Sustain. Energy Rev. 40, 673–687, (2014). https://doi.org/10.1016/j.rser.2014.07.216

  38. Kumar, M., Oyedun, A.O., Kumar A.: A Review on the Current Status of Various Hydrothermal Technologies on Biomass Feedstock (2017)

    Google Scholar 

  39. Sharma, S.K., Phan, H., Lee, J.: An Application Study on Road Surface Monitoring Using DTW Based Image Processing and Ultrasonic Sensors. Appl. Sci. 10, 4490 (2020). https://doi.org/10.3390/app10134490

  40. Pauly, M., Keegstra, K.: Plant cell wall polymers as precursors for biofuels. Curr Opin Plant Biol. 13, 305–312 (2010)

    Article  Google Scholar 

  41. Saha, B.C.: Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol.. 30(5), 279–291

    Google Scholar 

  42. Mussatto, S.I., Teixeira, J.A.: Lignocellulose as raw material in fermentation processes. In: A. Méndez-Vilas, A. (ed.) Applied Microbiology and Microbial Biotechnology. Formatex, pp. 897–907 (2010)

    Google Scholar 

  43. Chundawat, S.P.S., Beckham, G.T., Himmel, M.E. Dale, B,E.: Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu. Rev. Chem. Biomol. Eng. 2(6), 1–6.25 (2011)

    Google Scholar 

  44. Peng, F., Ren, J.L., Xu, F., Sun, R.C.: Chemicals from hemicelluloses: A review. In: Zhu, J.Y., Zhang, X., Pan, X. (eds.) Sustainable Production of Fuels, Chemicals, and Fibers from Forest Biomass. ACS Symposium Series, pp. 219–259. Washington DC, USA (2011)

    Google Scholar 

  45. Harmsen, P.F.H., Huijgen, W.J.J., Bermúdez López, L.M., Bakker, R.R.C.: Literature Review of Physical and Chemical Pretreatment Processes for Lignocellulosic Biomass. Energy Research Centre of Netherlands (ECN) (2010)

    Google Scholar 

  46. Ragauskas, A.J, Beckham, G.T., Biddy, M.J., Chandra, R., Chen, F., Davis, M.F., Davison, B.H., Dixon, R.A., Gilna, P., Keller, M., Langan, P., Naskar, A.K., Saddler, J.N., Tschaplinski, T.J., Tuskan, G.A., Wyman, C.E.: Lignin valorization: improving lignin processing in the biorefinery. Science 344 (6185) (2014)

    Google Scholar 

  47. Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., Schatz, P.F., Marita, J.M., Hatfield, R.D., Ralph, S.A., Christensen, J.H., Boerjan, W.: Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem. Rev. 3, 29–60 (2004)

    Article  Google Scholar 

  48. Guo, F., Shi, W., Sun, W., Li, X., Wang, F., Zhao, J., Qu, Y.: Differences in the adsorption of enzymes onto lignins from diverse types of lignocellulosic biomass and the underlying mechanism. Biotechnol. Biofuel. 7(38) (2014)

    Google Scholar 

  49. Sticklen, M.B.: Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat. Rev. Genet. 9, 433–443 (2008)

    Article  Google Scholar 

  50. Bugg, T.D.H., Ahmad, M., Hardiman, E.M., Singh, R.: The emerging role for bacteria in lignin degradation and bio-product formation. Curr. Opin. Biotechnol. 22, 394–400 (2011)

    Article  Google Scholar 

  51. Xiao, C., Anderson, C.T.: Roles of pectin in biomass yield and processing for biofuels. Front Plant Science 4(67) (2013)

    Google Scholar 

  52. Caffall, K.H., Mohnen, D.: The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohyd. Res. 344, 1879–1900 (2009)

    Article  Google Scholar 

  53. Rowell, R.M., Pettersen, R., Tshabalala, M.A.: Cell wall chemistry. In: Rowell, R.M. (ed.) Handbook of Wood Chemistry and Wood Composites, Second Edition. CRC Press, pp. 33–72 (2012)

    Google Scholar 

  54. Faulon, J., Carlson, G.A., Hatcher, P.G.: A three-dimensional model for lignocellulose from gymnospermous wood. Org. Geochem. 21(12), 1169–1179 (1994)

    Article  Google Scholar 

  55. Sharma, R.C., Sharma, S., Sharma, S.K., Sharma, N.: Analysis of generalized force and its influence on ride and stability of railway vehicle. Noise Vib. Worldw. 51, 95–109 (2020). https://doi.org/10.1177/0957456520923125

  56. Poletto, M., Ornaghi Júnior, H.L., Zattera, A.J.: Native cellulose: Structure, characterization and thermal properties. Materials 7, 6105–6119 (2014)

    Google Scholar 

  57. Adler, E.: Lignin chemistry-past, present and future. Wood Sci. Technol. 11, 169–218 (1977)

    Article  Google Scholar 

  58. Laksmono, N., Paraschiv, M., Loubar, K., Tazerout M.: Biodiesel production from biomass gasification tar via thermal/ catalytic cracking. Fuel Process. Technol. 106, 776–783 (2013). https://doi.org/10.1016/j.fuproc.2012.10.016

  59. Molino A., Chianese S., Musmarra D.: Biomass gasification technology : The state of the art overview. J. Energy Chem. 25(1), 10–25, (2016). https://doi.org/10.1016/j.jechem.2015.11.005

  60. Mani, S., Tabil, L.G., Sokhansanj, S.: Specific energy requirement for compacting corn stover. Bioresource Technol. 97(12), 1420–1426 (2006). https://doi.org/10.1016/j.biortech.2005.06.01918:58

    Article  Google Scholar 

  61. Baruah, D., Baruah, D.C.: Modeling of biomass gasification: A review. Renew. Sustain. Energy Rev. 39, 806–815 (2014). https://doi.org/10.1016/j.rser.2014.07.129

  62. Sambo, A.S.: Renewable energy electricity in Nigeria: The way forward. In: The Renewable Electricity Policy Conference 2016, pp. 11–12, Abuja (2006)

    Google Scholar 

  63. Heinimö, J., Junginger, M.: Production and trading of biomass for energy—An overview of the global status. Biomass Bioenerg. 33(9), 1310–1320 (2009). https://doi.org/10.1016/j.biombioe.2009.05.017

    Article  Google Scholar 

  64. Awulu, J.O., Omale, P.A., Ameh, J.A.: Comparative analysis of calorific values of selected Agricultural wastes. Nigerian J. Technol. (NIJOTECH) 37(4), 1141–1146 (2018)

    Article  Google Scholar 

  65. FAOSTAT. FAO statistics division, http://www.faostats.fao.org. Accessed 31/08/2022

  66. Lewis, M.L., Robenzon, J., Hans-Joachim N., Bernardo, R..: Potential for Simultaneous Improvement of Corn Grain Yield and Stover Quality for Cellulosic Ethanol. Crop Science (2010). 50. https://doi.org/10.2135/cropsci2009.03.0148.

  67. O’Connor, P.: A general introduction to biomass utilization possibilities. In: The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals, pp. 1–25. Elsevier (2013)

    Google Scholar 

  68. Adeoye, A.O., Quadri, R.O., Lawal, O.S.: Fixed-bed pyrolysis and thermal analyses of pressed oil palm fruit fibre as potential source of alternative energy. FUOYE J. Innov. Sci. Technol. (In press) (2022)

    Google Scholar 

  69. Panwar, N.L., Kothari, R., Tyagi, V.V.: Thermo chemical conversion of biomass—Eco-friendly energy routes. Renew. Sustain. Energy Rev. 16(4),1801–1816 (2012). https://doi.org/10.1016/j.rser.2012.01.024

  70. Adams, P., Bridgwater, T., Lea-Langton, A., Ross A., Watson, I.: Biomass conversion technologies. In: Greenhouse Gas Balance of Bioenergy Systems. 1st Edition, pp. 107–139. Elsevier Inc. (2018). https://doi.org/10.1016/B978-0-08-101036-5.00008-2

  71. Vassilev, S.V., Baxter, D., Vassileva, C.G.: An overview of the behaviour of biomass during combustion: Part I. Phase-mineral transformations of organic and inorganic matter. Fuel 112, 391–449 (2013)

    Google Scholar 

  72. Bhardawaj, S., Sharma, R., Sharma, S.: Ride Analysis of Track-Vehicle-Human Body Interaction Subjected to Random Excitation. J. Chinese Soc. Mech. Eng. 41, 237–236 (2020). https://doi.org/10.29979/JCSME.

  73. Taarning, E., Osmundsen, C.M., Yang, X., Voss, B., Andersen, I., Christensen C.H.: Zeolite-catalyzed biomass conversion to fuels and chemicals. Energy Environ. Sci. 4, 793–804 (2011). https://doi.org/10.1039/C004518G

  74. Serrano-Ruiz, J.C., Luque, R., and Clark, J.H.: The Role of heterogeneous catalysis in the biorefinery of the future. In: The Role of Catalysis for the Sustainable Production of Bio-fuels and Biochemicals, pp. 557–576. Elsevier B.V. (2013)

    Google Scholar 

  75. Fukuda, H., Kondo, A., Noda, H.: Biodiesel fuel production by transesterification of oils. J. Biosci. Bioeng. 92, 405–416 (2001)

    Article  Google Scholar 

  76. Renganathan, S.V., Narashimhan, S.L., Muthukumar, K.: An overview of enzymatic production of biodiesel. Bioresour. Technol. 99, 3975–3981 (2008)

    Article  Google Scholar 

  77. Xie, W., Huang, X., Li, H.: Soybean oil methyl esters preparation using NaX zeolites loaded with KOH as a heterogeneous catalyst. Bioresour. Technol. 98, 936–939 (2007)

    Article  Google Scholar 

  78. İlgen, O., Akin, A.N.: Development of alumina supported alkaline catalysts used for biodiesel production. Turk J Chem. 33, 281–287 (2009)

    Google Scholar 

  79. Gama, P.E., Lachter, E.R., Gil, R.: Characterization and catalytic activity of K2CO3/Al2O3 in the transesterification of sunflower oil in conventional and microwave heating. Quim Nova 38, 185–190 (2015)

    Google Scholar 

  80. Vyas, A.P., Verma, J.L., Subrahmanyan, N.: A review on FAME production processes. Fuel 89, 1–9 (2010)

    Article  Google Scholar 

  81. Chouhan, A.P.S., Sarma, A.K.: Modern heterogeneous catalysts for biodiesel production: A comprehensive review. Renew. Sustain. Energy Rev. 15(9),4378–4399 (2011).https://doi.org/10.1016/j.rser.2011.07.112

  82. Hu, L., Lin, L., Wu Z., Zhou S., Liu S.: Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals. Renew. Sustain. Energy Rev. 74, 230–257 (2017). https://doi.org/10.1016/j.rser.2017.02.042

  83. Sharma, S., Meena, R., Sharma, A., Goyal P. Biomass conversion technologies for renewable energy and fuels: A review Note, IOSR J. Mech. Civ. Eng. 11(2), 28–35 (2014). https://doi.org/10.9790/1684-11232835

  84. Sikarwar, V.S., Zhao, M., Fennell, P.S., Shab, N., Anthony E.J. Progress in biofuel production from gasification. Pror. Energy Combust. Sci. 61, 89–248 (2017). https://doi.org/10.1016/j.pecs.2017.04.001

  85. Rolando, Z., Krister, S., Emilia, B.: Rapid pyrolysis of agricultural residues at high temperature. Biomass and Bioenergy. 23, 357–366. https://doi.org/10.1016/S0961-9534(02)00061-2

  86. Brown T.R.: A techno-economic review of thermochemical cellulosic biofuel pathways. Bioresour. Technol. (2014). [PMID: 25266684]

    Google Scholar 

  87. Czernik, S., Evans, R., French, R.: Hydrogen from biomass-production by steam reforming of biomass pyrolysis oil. Catal. Today 129, 265–268 (2007)

    Article  Google Scholar 

  88. Keiser, J. R., Warrington, G. L., Lewis, S. A., Connatser, R. M., Jun, J., Qu, J., Lee, K., Brady, M. P.: Corrosion and Chemical Characterization of Bio-Oils from Biomass with Varying Ash and Moisture Contents. USA (2021)

    Google Scholar 

  89. Sulejmanovic, D., Keiser, J.R., Su, Y., Kass, M.D., Jack, R., Ferrell, J.R., Mariefel, V., Olarte, M.V., Wade, J.E., Jun, J.: Effect of Carboxylic Acids on Corrosion of Type 410 Stainless Steel in Pyrolysis Bio-Oil. Sustainability. 14(18), 11743 (2022). https://doi.org/10.3390/su141811743

    Article  Google Scholar 

  90. Hu, X.Z., Zhanming, G., Mortaza, Z., Shu, L., Jason, C.-H., Zhe, W.Y.: Coke formation during thermal treatment of bio-oil. Energy Fuels XXXX (2020). https://doi.org/10.1021/acs.energyfuels.0c01323

    Article  Google Scholar 

  91. Bamgboye, A.I., Oniya. O.: Pyrolytic conversion of corn cobs to medium grade fuels and chemical preservatives. The Federal University of Technology Journal of Engineering and Environmental Technolog. 3(2), 50–53 (2003)

    Google Scholar 

  92. Jahirul, M.I., Rasul M.: Recent developments in biomass pyrolysis for bio-Fuel production, its potential for commercial applications. In: Recent Researches in Environmental and Geological Sciences, pp. 256–265 (2012)

    Google Scholar 

  93. Cornelissen, T., Yperman, Y., Reggers, G., Schreurs, S., Carleer, R.: Flash co-pyrolysis of biomass with polylactic acid. Part 1: influence on bio-oil yield and heating value. Fuel 87, 1031–1041 (2008)

    Google Scholar 

  94. de Jongh, W.A.: Possible applications for vacuum pyrolysis in the processing of waste materials. Stellenbosch; SU (Thesis-M.Sc.) (2001)

    Google Scholar 

  95. Kong, S.H., Lam, S.S., Yek, P.N.Y., Liew, R.K., Ma, N.L.: Self- purging microwave pyrolysis: an innovative approach to convert oil palm shell into carbon-rich biochar for methylene blue adsorption. J. Chem. Technol. Biotechnol. 94(5), 1397–1405 (2019)

    Article  Google Scholar 

  96. Goyal, H.B., Seal D., Saxena. R.C. Bio-fuels from thermochemical conversion of renewable resources: a review. Renew. Sustain. Energy Rev. 12 504–517 (2008)

    Google Scholar 

  97. Damartzis, T., Zabaniotou, A.: Thermochemical conversion of biomass to second-generation biofuels through integrated process design—A review. Renew. Sustain. Energy Rev. 15(1), 366–378 (2011). https://doi.org/10.1016/j.rser.2010.08.003

  98. Gollakota, A.R.K., Kishore, N., Gu S.: A review on hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev. 1–15, (2017)

    Google Scholar 

  99. Hrncic, M.K., Kravanja, G., Knez, Z.: Hydrothermal treatment of biomass for energy and chemicals. Energy 1–11 (2016)

    Google Scholar 

  100. Wang, T., Zhai, Y., Zhu, Y., Li, C., Zeng, G.: A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew. Sustain. Energy Rev. 90, 223–247 (2018)

    Article  Google Scholar 

  101. Yaashikaa, P.R., Kumar, P.S., Varjani, S., Saravanan, A.: A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports. 28: e00570 (2020). https://doi.org/10.1016/j.btre.2020.e00570

  102. Lepage, T., Kammoun, M., Schmetz, Q., Richel, A.: Biomass-to-hydrogen: a review of main routes production, processes evaluation and techno-economical assessment. Biomass Bioenergy 144 105920 (2021). https://doi.org/10.1016/j.biombioe.2020.105920

  103. Ozdenkci, K., De Blasio, C., Muddassar, H.R.: A novel biorefinery integration concept for lignocellulosic biomass. Energy Convers. Manage. 149, 974–987 (2017). https://doi.org/10.1016/j.enconman.2017.04.034

  104. De Caprariis, B., De Filippis, P., Petrullo, A., Scarsella M.: Hydrothermal liquefaction of biomass : Influence of temperature and biomass composition on the bio-oil production. Fuel 208, 618–625 (2017). https://doi.org/10.1016/j.fuel.2017.07.054

  105. Akhtar, J., Aishah, N., Amin S.: A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev. 15(3), 1615–1624 (2011). https://doi.org/10.1016/j.rser.2010.11.054]

  106. Sharma, S.K., Sharma, R.C., Sharma, N.: Combined Multi-Body-System and Finite Element Analysis of a Rail Locomotive Crashworthiness. Int. J. Veh. Struct. Syst. 12 (2020). https://doi.org/10.4273/ijvss.12.4.15

  107. Bhardawaj, S., Sharma, R.C., Sharma, S.K.: Development in the modeling of rail vehicle system for the analysis of lateral stability. Mater. Today Proc. 25, 610–619 (2020). https://doi.org/10.1016/j.matpr.2019.07.376

  108. Sharma, R.C., Sharma, S., Sharma, S.K., Sharma, N., Singh, G.: Analysis of bio-dynamic model of seated human subject and optimization of the passenger ride comfort for three-wheel vehicle using random search technique. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 235, 106–121 (2021). https://doi.org/10.1177/1464419320983711

  109. Sharma, S.K., Sharma, R.C., Lee, J.: Effect of Rail Vehicle–Track Coupled Dynamics on Fatigue Failure of Coil Spring in a Suspension System. Appl. Sci. 11, 2650 (2021). https://doi.org/10.3390/app11062650

  110. Sharma, S.K., Sharma, R.C.: Pothole Detection and Warning System for Indian Roads. In: Advances in Interdisciplinary Engineering. pp. 511–519 (2019). https://doi.org/10.1007/978-981-13-6577-5_48

Download references

Acknowledgements

We are grateful to the Petroleum Trust Development Fund (PTDF), Nigeria, for providing the financial assistance to carry out this work through Scholarship fund.

Author information

Authors and Affiliations

Authors

Contributions

Abiodun Oluwatosin Adeoye (Conceptualization, write-up, resource research, data presentation, and editing of manuscript).

Olayide Samuel Lawal (Supervision, Design, and Conceptualization).

Rukayat Oluwatobiloba Quadri (Resource research and editing of manuscript).

Dosu Malomo (Resource research and Editing).

Muhammed Toyyibb Aliyu, Gyang Emmanuel Dang, Emmanuel Oghenero Emojevu, Musa Joshua Maikato, Mohammed Giwa Yahaya, Oluyemisi Omotayo Omonije, Victor Great Edidem, Yakubu Khartum Abubakar, Onyeka Francis Offor, Ezeaku Henry Sochima, Boniface Eche Peter, Baba Nwunuji Hikon (Resource research).

Corresponding author

Correspondence to Abiodun Oluwatosin Adeoye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adeoye, A.O. et al. (2023). Sustainable Energy via Thermochemical and Biochemical Conversion of Biomass Wastes for Biofuel Production. In: Sharma, S.K., Upadhyay, R.K., Kumar, V., Valera, H. (eds) Transportation Energy and Dynamics. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-99-2150-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2150-8_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2149-2

  • Online ISBN: 978-981-99-2150-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics