Skip to main content

Detection of Pathological Myopia fromĀ Fundus Images

  • Conference paper
  • First Online:
Communication and Intelligent Systems (ICCIS 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 686))

Included in the following conference series:

  • 306 Accesses

Abstract

Pathological myopia (PM), which results from degenerative changes in the sclera, choroid, and retinal pigment epithelium (RPE), is associated with irreversible vision loss. This study proposes automatically detecting PM or normal vision from input retina fundus image. We have experimented with various transfer learning models and the pre-processing steps using reinforcement learning (RL). The best results were achieved with our custom ResNet50 as a baseline model. It has achieved an AUC score of 0.9984 on the validation dataset provided by the PALM challenge, a Satellite Event of The IEEE International Symposium on Biomedical Imaging in Venice, Italy. This AUC score is among the top 3 performers in this challenge. As in medical domain, more accurate results are always in demand, and this score ensures that the model can be set up for a clinical application in future as a second opinion to ophthalmologists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang YX, Wang S, You QS, Jonas JB, Liu HH, Xu L (2010) Prevalence and progression of myopic retinopathy in Chinese adults: the Beijing eye study. Ophthalmology 117

    Google ScholarĀ 

  2. Ohno-Matsui K (2017) What is the fundamental nature of pathologic myopia? Retina 37

    Google ScholarĀ 

  3. Flitcroft DI (2012) The complex interactions of retinal, optical and environmental factors in myopia aetiology. Prog Retinal Eye Res 31

    Google ScholarĀ 

  4. Montolio FGJ, Jansonius NM, Marcus MW, de Vries MM (2011) Myopia as a risk factor for open-angle glaucoma: a systematic review and meta-analysis. Ophthalmology 118

    Google ScholarĀ 

  5. Santhanam N, Kim HE, Cosa-Linan A et al (2022) Transfer learning for medical image classification: a literature review. BMC Med Imaging 69

    Google ScholarĀ 

  6. Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT Press, Cambridge

    Google ScholarĀ 

  7. Sun X, Liao J, Xu Y, Zhang S, Zhang X, Fu H, JosĆ© FL, Orlando I, Bogunović H (2019) Palm: pathologic myopia challenge

    Google ScholarĀ 

  8. Gilani SO, Waris A, Rauf N (2021) Automatic detection of pathological myopia using machine learning. Sci Rep 11:16570

    Google ScholarĀ 

  9. Orlando JI, Bogunovic H, Sun X, Liao J, Xu Y, Zhang S, Zhang X, Fu H, Li F (2019) Palm: pathologic myopia challenge. IEEE Dataport

    Google ScholarĀ 

  10. Blaschko MB, Jacob J, Stalmans I, De Boever P, Hemelings R, Elen B (2021) Pathological myopia classification with simultaneous lesion segmentation using deep learning. Comput Methods Programs Biomed 199:105920

    Google ScholarĀ 

  11. He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition

    Google ScholarĀ 

  12. Freire CR, Moura JCC, Daniele MS et al (2020) Automatic lesion segmentation and pathological myopia classification in fundus images. arXiv: abs/2002.06382

  13. Breda JB, van Keer K, Bathula DR, Diaz-Pinto A, Orlando JI, Fu F et al (2020) Refuge challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med Image Anal 59:101570

    Google ScholarĀ 

  14. Almazroa A (2018) Retinal fundus images for glaucoma analysis: the Riga dataset. Deep blue data. University of Michigan

    Google ScholarĀ 

  15. Kamble R, Kokare M, Porwal P, Pachade S et al (2018) Indian diabetic retinopathy image dataset (IDRID): a database for diabetic retinopathy screening research. Data 3(3)

    Google ScholarĀ 

  16. Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition

    Google ScholarĀ 

  17. Yu W, Lu L, Zhou E et al (2021) Development of deep learning-based detecting systems for pathologic myopia using retinal fundus images. Commun Biol 4

    Google ScholarĀ 

  18. Devda J, Eswari R (2019) Pathological myopia image analysis using deep learning. Procedia Comput Sci 165

    Google ScholarĀ 

  19. Zhuo Z, Cheng J, Jiang L et al (2012) Pathological myopia detection from selective fundus image features. In: 2012 7th IEEE conference on industrial electronics and applications (ICIEA), pp 1742ā€“1745

    Google ScholarĀ 

  20. Saw SM, Chua WH et al (2002) Nearwork in early onset myopia. Invest Ophthalmol Vis Sci 43

    Google ScholarĀ 

  21. Ding C, Peng HC, Long FH (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and minredundancy. IEEE Trans Pattern Anal Mach Intell 27

    Google ScholarĀ 

  22. Kong ST, Jung K-H, Son J, Kim J (2021) Leveraging the generalization ability of deep convolutional neural networks for improving classifiers for color fundus photographs. Appl Sci 591

    Google ScholarĀ 

  23. DecenciĆØre E, Zhang X et al (2014) Feedback on a publicly distributed image database: the Messidor database. Image Anal Stereology 33(3):231ā€“234

    Google ScholarĀ 

  24. Briskilal J, Kalyanasundaram A, Prabhakaran S, Senthil Kumar D (2020) Detection of pathological myopia using convolutional neural network. Int J Psychosoc Rehabil 24

    Google ScholarĀ 

  25. Pathan S, Siddalingaswamy PC et al (2020) Automated detection of pathological and non-pathological myopia using retinal features and dynamic ensemble of classifiers. Telecommun Radio Eng 79

    Google ScholarĀ 

  26. Hung S-K, Gan JQ (2021) Augmentation of small training data using GANs for enhancing the performance of image classification. In: 2020 25th international conference on pattern recognition (ICPR), pp 3350ā€“3356

    Google ScholarĀ 

  27. Amina A, Mohammed B (2018) Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6:52138ā€“52160

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarvat Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ali, S., Raut, S. (2023). Detection of Pathological Myopia fromĀ Fundus Images. In: Sharma, H., Shrivastava, V., Bharti, K.K., Wang, L. (eds) Communication and Intelligent Systems. ICCIS 2022. Lecture Notes in Networks and Systems, vol 686. Springer, Singapore. https://doi.org/10.1007/978-981-99-2100-3_17

Download citation

Publish with us

Policies and ethics