Skip to main content

Antibacterial Activity of Polyamide and High-Density Polyethylene Nets Grafted with Polyethylene Glycol

  • Conference paper
  • First Online:
Proceedings of the 3rd International Congress of Applied Chemistry & Environment (ICACE–3) (ICACE 2022)

Abstract

The aims of this study are to stop biofouling formation and to create antibacterial layers on aquaculture nets using a chemical product known for its antibacterial behavior. Polyamide 6.6 and high-density polyethylene nets were grafted with polyethylene glycol by following two methods. At first, grafted nets were evaluated with SEM and XPS in order to study the morphological and chemical information. Then, the antibacterial activity was studied at laboratory scale by measuring the rate of adhesion, on nets, of three bacterial strains (Pseudoalteromonas citrea, Pseudoalteromonas elyakovii, and Vibrio harveyi). Results highlighted that the surface of the ungrafted nets was the most colonized by bacteria, with a progressive increase in bacterial adhesion over the time. For PA 6.6 and HDPE nets, the best antibacterial behavior was noted on nets grafted with PEG after surface activation at 45 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amara I, Miled W, BenSlama R et al (2018) Antifouling processes and toxicity effects of antifouling paints on marine environment A review. Environ Toxicol Pharmacol 57:115–130

    Article  CAS  PubMed  Google Scholar 

  2. Amara I, Miled W, BenSlama R et al (2019) Surface modifications by plasma treatment, chemical grafting and over dyeing of polyamide nets to improve the antifouling performance in the aquaculture field. Dyes Pigm 166:107–113. https://doi.org/10.1016/j.dyepig.2019.03.005

    Article  CAS  Google Scholar 

  3. Aye AM (2015) Mise en évidence du système de communication “Quorum Sensing” impliquant les AHLs chez des bactéries marines isolées de la Méditerranée, Toulon

    Google Scholar 

  4. Bannister J, Sievers M, Bush F, et al (2019) Biofouling in marine aquaculture: a review of recent research and developments. Biofouling 35(6):631–648. https://doi.org/10.1080/08927014.2019.1640214

  5. Baxter EJ, Sturt MM, Ruane NM, et al (2012) Biofouling of the hydroid Ectopleura larynx on aquaculture nets in Ireland: implications for finfish health. Fish Vet J

    Google Scholar 

  6. Bloecher N, Powell M, Hytterød S, et al (2018) Effects of cnidarian biofouling on salmon gill health and development of amoebic gill disease. PLoS One 13(7). https://doi.org/10.1371/journal.pone.0199842

  7. Bovio E, Fauchon M, Toueix Y et al (2019) The sponge-associated fungus Eurotium chevalieri MUT 2316 and its bioactive molecules: potential applications in the field of antifouling. Mar Biotechnol 21(6):743–752. https://doi.org/10.1007/s10126-019-09920-y

    Article  CAS  Google Scholar 

  8. Brian-Jaisson F (2014) Identification et caractérisation des exopolymères de biofilms de bactéries marines, Toulon

    Google Scholar 

  9. Campelo CS, Chevallier P, Vaz JM et al (2017) Sulfonated chitosan and dopamine based coatings for metallic implants in contact with blood. Mater Sci Eng C 72:682–691

    Article  CAS  Google Scholar 

  10. Dunne WM (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15(2):155–166. https://doi.org/10.1128/CMR.15.2.155-166.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eckman JE, Thistle D, Burnett WC et al (2001) Performance of cages as large animal-exclusion devices in the deep sea. J Mar Res 59(1):79–95. https://doi.org/10.1357/002224001321237371

    Article  Google Scholar 

  12. Guardiola FA, Cuesta A, Meseguer J et al (2012) Risks of using antifouling biocides in aquaculture. Int J Mol Sci 13(2):1541–1560. https://doi.org/10.3390/ijms13021541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hall-Stoodley L, Stoodley P (2002) Developmental regulation of microbial biofilms. Curr Opin Biotechnol 13(3):228–233. https://doi.org/10.1016/S0958-1669(02)00318-X

    Article  CAS  PubMed  Google Scholar 

  14. Hamming LM, Messersmith PB (2008) Fouling resistant biomimetic poly (ethylene glycol) based grafted polymer coatings. Mater Matters 3(52)

    Google Scholar 

  15. Kang G, Liu M, Lin B et al (2007) A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly(ethylene glycol). Polymer 48(5):1165–1170

    Article  CAS  Google Scholar 

  16. Lane A, Willemsen P (2004) Collaborative effort looks into biofouling. Fish Farming Int 44:34–35

    Google Scholar 

  17. Lehaitre M, Delauney L, Compère C (2008) Biofouling and underwater measurements. Real-time observation systems for ecosystem dynamics and harmful algal blooms: theory, instrumentation and modelling. Oceanographic methodology series. UNESCO, Paris, pp 463–493

    Google Scholar 

  18. Li B and Ye Q (2015). Antifouling surfaces of self-assembled thin layer. In: Antifouling surfaces and materials. Springer, pp 31–54

    Google Scholar 

  19. Phillippi AL, O’Connor NJ, Lewis AF et al (2001) Surface flocking as a possible anti-biofoulant. Aquac 195(3–4):225–238. https://doi.org/10.1016/S0044-8486(00)00556-1

    Article  Google Scholar 

  20. Sagle AC, Van Wagner EM, Ju H, et al (2009) PEG-coated reverse osmosis membranes: desalination properties and fouling resistance. J Membr Sci 340(1–2):92–108

    Google Scholar 

  21. Trepos R, Cervin G, Pile C et al (2015) Evaluation of cationic micropeptides derived from the innate immune system as inhibitors of marine biofouling. Biofouling 31(4):393–403. https://doi.org/10.1080/08927014.2015.1048238

    Article  CAS  PubMed  Google Scholar 

  22. Vaz JM, Michel EC, Chevallier P et al (2014) Covalent grafting of chitosan on plasma-treated polytetrafluoroethylene surfaces for biomedical applications. J Biomater Tissue Eng 4(11):915–924

    Article  Google Scholar 

  23. Van Wagner EM, Sagle AC, Sharma MM et al (2011) Surface modification of commercial polyamide desalination membranes using poly(ethylene glycol) diglycidyl ether to enhance membrane fouling resistance. J Membr Sci 367(1–2):273–287

    Article  Google Scholar 

  24. Walker J, Marsh P (2004) A review of biofilms and their role in microbial contamination of dental unit water systems (DUWS). Int Biodeterior Biodegrad 54(2–3):87–98. https://doi.org/10.1016/j.ibiod.2004.03.012

    Article  CAS  Google Scholar 

  25. Willemsen P (2005) Biofouling in European aquaculture: is there an easy solution. Eur Aquac Soc 35:82–87

    Google Scholar 

  26. Yebra DM, Kiil S, Dam-Johansen K (2004) Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50(2):75–104. https://doi.org/10.1016/j.porgcoat.2003.06.00

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Intissar Amara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amara, I. et al. (2023). Antibacterial Activity of Polyamide and High-Density Polyethylene Nets Grafted with Polyethylene Glycol. In: Khiari, R., Jawaid, M. (eds) Proceedings of the 3rd International Congress of Applied Chemistry & Environment (ICACE–3). ICACE 2022. Springer Proceedings in Materials, vol 23. Springer, Singapore. https://doi.org/10.1007/978-981-99-1968-0_1

Download citation

Publish with us

Policies and ethics