Skip to main content

Multifunctional Cyclodextrins Carriers for Pulmonary Drug Delivery: Prospects and Potential

  • Chapter
  • First Online:
Pulmonary Drug Delivery Systems: Material and Technological Advances

Abstract

Cyclodextrin (CD) is one of the most explored complexing agents in the pharmaceutical sector to improve different therapeutic agents’ solubility, stability, and bioavailability. Additionally, CDs and CDs-derivatives are easily tailored to fabricate diverse multifunctional carrier systems such as micelles, liposomes, niosomes, polymeric nanoparticles, lipid nanoparticles, and porous microparticles to circumvent the problems associated with both drug substances as well as carrier engineering. Moreover, the recent development in materials sciences, nanotechnology, molecular biology, and supramolecular chemistry greatly influenced the pharmaceutical application of CDs. The basis of this chapter is to provide insights into the potential of these multifaceted complexing agents for pulmonary delivery. This chapter summarizes and interprets scientific data on inhaled CDs-based carriers, which have been published in recent years. Initially, this chapter provides basic details on CDs and CD derivatives, followed by miscellaneous practical applications in pharmaceutical industries. In the subsequent section, the pulmonary applications of CDs are cautiously discussed with particular emphasis on aerosolization fate, powder dispersion behavior, pharmacokinetic outcomes, and long-term stability performance. The last section discusses the prospects and potential for translating inhaled CDs-based carrier systems. The bottom-line marks CD-based carriers for the growth of pulmonary medicines in the upcoming years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crini G. Review: a history of cyclodextrins. Chem Rev. 2014;114(21):10940–75.

    Article  CAS  PubMed  Google Scholar 

  2. Martin J, Díaz-Montaña JE, Asuero GA. Cyclodextrins: past and present. In: Arora P, Dhingra N, editors. Cyclodextrin: a Versatile Ingredient; 2018. p. 1–43.

    Google Scholar 

  3. Wüpper S, Lüersen K, Rimbach G. Cyclodextrins, natural compounds, and plant bioactives-a nutritional perspective. Biomol Ther. 2021;11(3):401.

    Google Scholar 

  4. Del Valle EM. Cyclodextrins and their uses: a review. Process Biochem. 2004;39(9):1033–46.

    Article  Google Scholar 

  5. Saokham P, Muankaew C, Jansook P, Loftsson T. Solubility of Cyclodextrins and drug/Cyclodextrin complexes. Molecules. 2018;23(5):1161.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Loftsson T, Jarho P, Másson M, Järvinen T. Cyclodextrins in drug delivery. Expert Opin Drug Deliv. 2005;2(2):335–51.

    Article  CAS  PubMed  Google Scholar 

  7. Aiassa V, Garnero C, Longhi MR, Zoppi A. Cyclodextrin multi-component complexes: pharmaceutical applications. Pharmaceutics. 2021;13(7):1099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Patel M, Hirlekar R. Multicomponent cyclodextrin system for improvement of solubility and dissolution rate of poorly water-soluble drug. Asian J Pharmaceutical Sci. 2019;14(1):104–15.

    Google Scholar 

  9. Carneiro SB, Costa Duarte FÍ, Heimfarth L, Siqueira Quintans JS, Quintans-Júnior LJ, Veiga Júnior VFD, Neves de Lima ÁA. CyclodextrinDrug inclusion complexes: In Vivo and In Vitro approaches. Int J Mol Sci. 2019;20(3):642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Braga SS. Cyclodextrins: emerging medicines of the new millennium. Biomol Ther. 2019;9(12):801.

    CAS  Google Scholar 

  11. Lee JU, Lee SS, Lee S, Oh HB. Noncovalent complexes of Cyclodextrin with small organic molecules: applications and insights into host-guest interactions in the gas phase and condensed phase. Molecules. 2020;25(18):4048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bai CC, Tian BR, Zhao T, Huang Q, Wang ZZ. Cyclodextrin-catalyzed organic synthesis: reactions, mechanisms, and applications. Molecules. 2017;22(9):1475.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Guo C, Xiao Y. Negatively charged cyclodextrins: synthesis and applications in chiral analysis-a review. Carbohydr Polym. 2021;256:117517.

    Article  CAS  PubMed  Google Scholar 

  14. Xiao Y, Ng SC, Tan TT, Wang Y. Recent development of cyclodextrin chiral stationary phases and their applications in chromatography. J Chromatogr A. 2012;1269:52–68.

    Article  CAS  PubMed  Google Scholar 

  15. Rousseau J, Menuel S, Rousseau C, Hapiot F, Monflier E. Cyclodextrins as porous material for catalysis. In: Organic Nanoreactors. Academic Press; 2016. p. 15–42.

    Chapter  Google Scholar 

  16. Leemhuis H, Kelly RM, Dijkhuizen L. Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications. Appl Microbiol Biotechnol. 2010;85(4):823–35.

    Article  CAS  PubMed  Google Scholar 

  17. Numanoğlu U, Sen T, Tarimci N, Kartal M, Koo OM, Onyüksel H. Use of cyclodextrins as a cosmetic delivery system for fragrance materials: linalool and benzyl acetate. AAPS PharmSciTech. 2007;8(4):E85.

    Article  PubMed  Google Scholar 

  18. Petitjean M, García-Zubiri IX, Isasi JR. History of cyclodextrin-based polymers in food and pharmacy: a review. Environ Chem Lett. 2021:1–12.

    Google Scholar 

  19. Gonzalez Pereira A, Carpena M, García Oliveira P, Mejuto JC, Prieto MA, Simal GJ. Main applications of Cyclodextrins in the food industry as the compounds of choice to form host-guest complexes. Int J Mol Sci. 2021;22(3):1339.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Astray G, Mejuto JC, Simal-Gandara J. Latest developments in the application of cyclodextrin host-guest complexes in beverage technology processes. Food Hydrocoll. 2020;106:105882.

    Article  CAS  Google Scholar 

  21. Bognanni N, Bellia F, Viale M, Bertola N, Vecchio G. Exploring charged polymeric Cyclodextrins for biomedical applications. Molecules. 2021;26(6):1724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sajadi S, Rojas P, Oppenheimer SB. Cyclodextrin, a probe for studying adhesive interactions. Acta Histochem. 2007;109(4):338–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Szente L, Fenyvesi É. Cyclodextrin-enabled polymer composites for packaging. Molecules. 2018;23(7):1556.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu Y, Sameen DE, Ahmed S, Wang Y, Lu R, Dai J, Li S, Qin W. Recent advances in cyclodextrin-based films for food packaging. Food Chem. 2021;370:131026.

    Article  PubMed  Google Scholar 

  25. Xiao Z, Zhang Y, Niu Y, Ke Q, Kou X. Cyclodextrins as carriers for volatile aroma compounds: A review. Carbohydrate Polymers. 2021;269:118292.

    Article  CAS  PubMed  Google Scholar 

  26. Mamusa M, Resta C, Sofroniou C, Baglioni P. Encapsulation of volatile compounds in liquid media: fragrances, flavors, and essential oils in commercial formulations. Adv Colloid Interf Sci. 2021;102544

    Google Scholar 

  27. Bezerra FM, Lis MJ, Firmino HB, Dias da Silva JG, Curto Valle RCS, Borges Valle JA, Scacchetti FAP, Tessaro AL. The role of β-Cyclodextrin in the textile industry-review. Molecules. 2020;25(16):3624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol. 2010;62(11):1607–21.

    Article  CAS  PubMed  Google Scholar 

  29. Rincón-López J, Almanza-Arjona YC, Riascos AP, Rojas-Aguirre Y. When Cyclodextrins met data science: unveiling their pharmaceutical applications through network science and text-mining. Pharmaceutics. 2021;13(8):1297.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rincón-López J, Almanza-Arjona YC, Riascos AP, Rojas-Aguirre Y. Technological evolution of cyclodextrins in the pharmaceutical field. J Drug Deliv Sci Technol. 2021;61:102156.

    Article  PubMed  Google Scholar 

  31. Zarzycki PK, Głód BK. Cyclodextrins-based nanocomplexes for encapsulation of bioactive compounds in food, cosmetics, and pharmaceutical products: principles of supramolecular complexes formation, their influence on the antioxidative properties of target chemicals, and recent advances in selected industrial applications. Encapsulations. 2016:717–67.

    Google Scholar 

  32. Loftsson T. Cyclodextrins in parenteral formulations. J Pharm Sci. 2021;110(2):654–64.

    Article  CAS  PubMed  Google Scholar 

  33. Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. Int J Pharm. 2007;329(1–2):1–1.

    Article  CAS  PubMed  Google Scholar 

  34. Loftsson T. Cyclodextrins and the biopharmaceutics classification system of drugs. J Incl Phenom. 2002;44:63–7.

    Article  CAS  Google Scholar 

  35. Tiwari G, Tiwari R, Rai AK. Cyclodextrins in delivery systems: applications. J Pharm Bioallied Sci. 2010;2(2):72–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cyclodextrins used as excipients Report published in support of the ‘Questions and answers on cyclodextrins used as excipients in medicinal products for human use’ (EMA/CHMP/495747/2013). European Medicines Agency, 2017.

    Google Scholar 

  37. Gómez-Graña S, Pérez-Juste J, Hervés P. Cyclodextrins and inorganic nanoparticles: another tale of synergy. Adv Colloid Interf Sci. 2021;288:102338.

    Article  Google Scholar 

  38. Bakshi PR, Londhe VY. Widespread applications of host-guest interactive cyclodextrin functionalized polymer nanocomposites: its meta-analysis and review. Carbohydr Polym. 2020;242:116430.

    Article  CAS  PubMed  Google Scholar 

  39. Garrido PF, Calvelo M, Blanco-González A, Veleiro U, Suárez F, Conde D, Cabezón A, Piñeiro Á, Garcia-Fandino R. The Lord of the NanoRings: Cyclodextrins and the battle against SARS-CoV-2. Int J Pharm. 2020;588:119689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shelley H, Babu RJ. Role of Cyclodextrins in nanoparticle-based drug delivery systems. J Pharm Sci. 2018;107(7):1741–53.

    Article  CAS  PubMed  Google Scholar 

  41. Gharib R, Greige-Gerges H, Fourmentin S, Charcosset C, Auezova L. Liposomes incorporating cyclodextrin–drug inclusion complexes: current state of knowledge. Carbohydr Polym. 2015;129:175–86.

    Article  CAS  PubMed  Google Scholar 

  42. Muñoz-Shugulí C, Vidal CP, Cantero-López P, Lopez-Polo J. Encapsulation of plant extract compounds using cyclodextrin inclusion complexes, liposomes, electrospinning and their combinations for food purposes. Trends Food Sci Technol. 2020;108:177–86.

    Article  Google Scholar 

  43. Capelezzo AP, Mohr LC, Dalcanton F, de Mello JM, Fiori MA. β-Cyclodextrins as encapsulating agents of essential oils. Cyclodext-Versatile Ingred. 2018;

    Google Scholar 

  44. Mathapa BG, Paunov VN. Nanoporous cyclodextrin-based co-polymeric microspheres for encapsulation of active components. J Mater Chem B. 2013;1(29):3588–98.

    Article  CAS  PubMed  Google Scholar 

  45. Sou T, Bergström CAS. Contemporary formulation development for inhaled pharmaceuticals. J Pharm Sci. 2021;110(1):66–86.

    Article  CAS  PubMed  Google Scholar 

  46. Mehta PP, Dhapte-Pawar V. Role of surfactants in pulmonary drug delivery. In: Green sustainable process for chemical and environmental engineering and science. Academic Press; 2022. p. 559–77.

    Chapter  Google Scholar 

  47. Mehta P. Imagine the superiority of dry powder inhalers from carrier engineering. J Drug Deliv. 2018;2018:1.

    Article  Google Scholar 

  48. Jadhav P, Patil P, Bhagwat D, Gaikwad V, Mehta PP. Recent advances in orthogonal analytical techniques for microstructural understanding of inhalable particles: present status and future perspective. J Drug Deliv Sci Technol. 2022;103089

    Google Scholar 

  49. Mehta PP. Dry powder inhalers: a concise summary of the electronic monitoring devices. Ther Deliv. 2021 Jan;12(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  50. Mehta PP. Dry powder inhalers: upcoming platform technologies for formulation development. Ther Deliv. 2019 Sep;10(9):551–4.

    Article  CAS  PubMed  Google Scholar 

  51. Tan ZM, Lai GP, Pandey M, Srichana T, Pichika MR, Gorain B, Bhattamishra SK, Choudhury H. Novel approaches for the treatment of pulmonary tuberculosis. Pharmaceutics. 2020;12(12):1196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mehta PP, Dhapte-Pawar VS. Repurposing drug molecules for new pulmonary therapeutic interventions. Drug Deliv Transl Res. 2021;11(5):1829–48.

    Article  PubMed  Google Scholar 

  53. Washington N, Washington C, Wilson CG. Pulmonary drug delivery. Physiological pharmaceutics. Barriers to drug absorption. 2nd ed. London, UK: Taylor & Francis; 2001. p. 221–47.

    Google Scholar 

  54. Henning A, Schneider M, Nafee N, Muijs L, Rytting E, Wang X, Kissel T, Grafahrend D, Klee D, Lehr CM. Influence of particle size and material properties on mucociliary clearance from the airways. J Aerosol Med Pulm Drug Deliv. 2010;23(4):233–41.

    Article  CAS  PubMed  Google Scholar 

  55. Mehta P, Bothiraja C, Kadam S, et al. Effect of USP induction ports, glass sampling apparatus, and inhaler device resistance on aerodynamic patterns of fluticasone propionate-loaded engineered mannitol microparticles. AAPS PharmSciTech. 2019;20:197.

    Article  PubMed  Google Scholar 

  56. Kamble R, Palve P, Mehta P. Preparation, and evaluation of amorphous olmesartan medoxomil with porous silica microparticles using spray-drying technique. J Adv Pharma Edu Res. 2014;4(4):444–50.

    CAS  Google Scholar 

  57. Alhajj N, O'Reilly NJ, Cathcart H. Designing enhanced spray dried particles for inhalation: a review of the impact of excipients and processing parameters on particle properties. Powder Technol. 2021 May 1;384:313–31.

    Article  CAS  Google Scholar 

  58. Mehta P, Dhapte VV. Propulsive PAT paradigm: optimization of freeze drying process. Int J Pharm Sci Rev Res. 2014;28(2):240–6.

    Google Scholar 

  59. Vishali DA, Monisha J, Sivakamasundari SK, Moses JA, Anandharamakrishnan C. Spray freeze drying: emerging applications in drug delivery. J Control Release. 2019;300:93–101.

    Article  CAS  PubMed  Google Scholar 

  60. Poursina N, Vatanara A, Rouini MR, Gilani K, Rouholamini NA. Systemic delivery of parathyroid hormone (1-34) using spray freeze-dried inhalable particles. Pharm Dev Technol. 2017;22(6):733–9.

    Article  CAS  PubMed  Google Scholar 

  61. Tewes F, Gobbo OL, Amaro MI, Tajber L, Corrigan OI, Ehrhardt C, Healy AM. Evaluation of HPβCD-PEG microparticles for salmon calcitonin administration via pulmonary delivery. Mol Pharm. 2011;8(5):1887–98.

    Article  CAS  PubMed  Google Scholar 

  62. Ungaro F, di Villa d'E, Bianca R, Giovino C, Miro A, Sorrentino R, Quaglia F, La Rotonda MI. Insulin-loaded PLGA/cyclodextrin large porous particles with improved aerosolization properties: in vivo deposition and hypoglycaemic activity after delivery to rat lungs. J Control Release. 2009;135(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  63. Nizankowska E, Soja J, Pinis G, et al. Treatment of steroid dependent bronchial asthma with cyclosporin. Eur Respir J. 1995;8:1091–9.

    Article  CAS  PubMed  Google Scholar 

  64. Matilainen L, Järvinen K, Toropainen T, Näsi E, Auriola S, Järvinen T, Jarho P. In vitro evaluation of the effect of cyclodextrin complexation on pulmonary deposition of a peptide, cyclosporin a. Int J Pharm. 2006;318(1–2):41–8.

    Article  CAS  PubMed  Google Scholar 

  65. Berton P, Mishra MK, Choudhary H, Myerson AS, Rogers RD. Solubility studies of cyclosporine using ionic liquids. ACS omega. 2019 May 1;4(5):7938–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fukaya H, Iimura A, Hoshiko K, Fuyumuro T, Noji S, Nabeshima T. A cyclosporin a/maltosyl-alpha-cyclodextrin complex for inhalation therapy of asthma. Eur Respir J. 2003;22(2):213–9.

    Article  CAS  PubMed  Google Scholar 

  67. Jalalipour M, Najafabadi AR, Gilani K, Esmaily H, Tajerzadeh H. Effect of dimethyl-beta-cyclodextrin concentrations on the pulmonary delivery of recombinant human growth hormone dry powder in rats. J Pharm Sci. 2008;97(12):5176–85.

    Article  CAS  PubMed  Google Scholar 

  68. Ma BN, Li XJ. Resveratrol extracted from Chinese herbal medicines: a novel therapeutic strategy for lung diseases. Chinese Herbal Medicines. 2020 Oct 1;12(4):349–58.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Mehta P, Bothiraja C, Mahadik K, Kadam S, Pawar A. Phytoconstituent based dry powder inhalers as biomedicine for the management of pulmonary diseases. Biomed Pharmacother. 2018;108:828–37.

    Article  CAS  PubMed  Google Scholar 

  70. Trotta V, Lee WH, Loo CY, Haghi M, Young PM, Scalia S, Traini D. In vitro biological activity of resveratrol using a novel inhalable resveratrol spray-dried formulation. Int J Pharm. 2015 Aug 1;491(1–2):190–7.

    Article  CAS  PubMed  Google Scholar 

  71. Dimer FA, Ortiz M, Pohlmann AR, Guterres SS. Inhalable resveratrol microparticles produced by vibrational atomization spray drying for treating pulmonary arterial hypertension. J Drug Deliv Sci Technol. 2015 Oct 1;29:152–8.

    Article  CAS  Google Scholar 

  72. Kong D, et al. Pulmonary administration of resveratrol/hydroxypropyl-β-cyclodextrin inclusion complex: in vivo disposition and in vitro metabolic study. J Drug Deliv Sci Technol. 2020;60(2020):101995.

    Article  CAS  Google Scholar 

  73. Zhang T, Zhu L, Li M, Hu Y, Zhang E, Jiang Q, Han G, Jin Y. Inhalable Andrographolide-β-cyclodextrin inclusion complexes for treatment of Staphylococcus aureus pneumonia by regulating immune responses. Mol Pharm. 2017;14(5):1718–25.

    Article  CAS  PubMed  Google Scholar 

  74. Mehta P, Dhapte V. A comprehensive review on pharmacokinetic profile of some traditional Chinese medicines. New J Sci. 2016;2016:1–32.

    Article  Google Scholar 

  75. Li M, Zhu L, Zhang T, Liu B, Lina D, Jin Y. Pulmonary delivery of tea tree oil-b-cyclodextrin inclusion complexes for the treatment of fungal and bacterial pneumonia. J Pharm Pharmacol. 2017;69:1458.

    Article  CAS  PubMed  Google Scholar 

  76. Mehta P, Pawar A, Mahadik K, Bothiraja C. Emerging novel drug delivery strategies for bioactive flavonol fisetin in biomedicine. Biomed Pharmacother. 2018 Oct 1;106:1282–91.

    Article  CAS  PubMed  Google Scholar 

  77. Mohtar N, Taylor K, Sheikh K, et al. Design and development of dry powder sulfobutylether-β-cyclodextrin complex for pulmonary delivery of fisetin. Eur J Pharm Biopharm. 2017;113:1–10.

    Article  CAS  PubMed  Google Scholar 

  78. Wang MG, Liu XM, Wu SQ, He JQ. Impacts of clofazimine on the treatment outcomes of drug-resistant tuberculosis. Microbes Infect. 2022;105020:105020.

    Google Scholar 

  79. Mashele SA, Steel HC, Matjokotja MT, Rasehlo SS, Anderson R, Cholo MC. Assessment of the efficacy of clofazimine alone and in combination with primary agents against mycobacterium tuberculosis in vitro. J Glob Antimicrob Resist. 2022;29:343–52.

    Article  CAS  PubMed  Google Scholar 

  80. Mehta P, Bothiraja C, Kadam S, Pawar A. Potential of dry powder inhalers for tuberculosis therapy: facts, fidelity and future. Artificial Cells, Nanomedicine, and Biotechnology. 2018;46(sup3):S791–806.

    Article  CAS  PubMed  Google Scholar 

  81. Ribeiro R, de Castro V, Todaro LC, da Silva RP, Simon A, do Carmo FA, de Sousa VP, Rodrigues CR, Sarmento B, Healy AM, Cabral LM. Development of inhaled formulation of modified clofazimine as an alternative to treatment of tuberculosis. J Drug Deliv Sci Technol. 2020;58:101805.

    Article  Google Scholar 

  82. Kadota K, Senda A, Tagishi H, Ayorinde JO, Tozuka Y. Evaluation of highly branched cyclic dextrin in inhalable particles of combined antibiotics for the pulmonary delivery of anti-tuberculosis drugs. Int J Pharm. 2017;517(1–2):8–18.

    Article  CAS  PubMed  Google Scholar 

  83. Chen Y, Wang F. Review on the preparation, biological activities and applications of curdlan and its derivatives. Eur Polym J. 2020;141:110096.

    Article  CAS  Google Scholar 

  84. Yunus Basha R, Sampath Kumar TS, Doble M. Dual delivery of tuberculosis drugs via cyclodextrin conjugated curdlan nanoparticles to infected macrophages. Carbohydr Polym. 2019;218:53–62.

    Article  CAS  PubMed  Google Scholar 

  85. Pinner NA, Hamilton LA, Hughes A. Roflumilast: a phosphodiesterase-4 inhibitor for the treatment of severe chronic obstructive pulmonary disease. Clin Ther. 2012 Jan;34(1):56–66.

    Article  CAS  PubMed  Google Scholar 

  86. Murad HA, Habib HS, Rafeeq MM, Sulaiman MI, Abdulrahman AS, Khabaz MN. Co-inhalation of roflumilast, rather than formoterol, with fluticasone more effectively improves asthma in asthmatic mice. Exp Biol Med. 2017;242(5):516–26.

    Article  CAS  Google Scholar 

  87. Chapman RW, House A, Jones H, Richard J, Celly C, Prelusky D, Ting P, Hunter JC, Lamca J, Phillips JE. Effect of inhaled roflumilast on the prevention and resolution of allergen-induced late phase airflow obstruction in Brown Norway rats. Eur J Pharmacol. 2007;571(2–3):215–21.

    Article  CAS  PubMed  Google Scholar 

  88. Mahmoud AA, Elkasabgy NA, Abdelkhalek AA. Design and characterization of emulsified spray dried alginate microparticles as a carrier for the dually acting drug roflumilast. Eur J Pharm Sci. 2018;122:64–76.

    Article  CAS  PubMed  Google Scholar 

  89. Suzuki EY, Amaro MI, de Almeida GS, Cabral LM, Healy AM, de Sousa VP. Development of a new formulation of roflumilast for pulmonary drug delivery to treat inflammatory lung conditions. Int J Pharm. 2018;550(1–2):89–99.

    Article  CAS  PubMed  Google Scholar 

  90. Barnes PJ. Scientific rationale for using a single inhaler for asthma control. Eur Respir J. 2007 Mar;29(3):587–95.

    Article  CAS  PubMed  Google Scholar 

  91. Nelson HS, Chapman KR, Pyke SD, Johnson M, Pritchard JN. Enhanced synergy between fluticasone propionate and salmeterol inhaled from a single inhaler versus separate inhalers. J Allergy Clin Immunol. 2003;112(1):29–36.

    Article  CAS  PubMed  Google Scholar 

  92. Suzuki EY, et al. Effects of a novel roflumilast and formoterol fumarate dry powder inhaler formulation in experimental allergic asthma. Int J Pharm. 2020;588:119771.

    Article  CAS  PubMed  Google Scholar 

  93. Lambrecht BN, Hammad H. The immunology of asthma. Nature Immunol. 2014;16:45–56.

    Article  Google Scholar 

  94. Holgate ST, Polosa R. The mechanisms, diagnosis, and management of severe asthma in adults. Lancet. 2006;368:780–93.

    Article  CAS  PubMed  Google Scholar 

  95. Derendorf H, Nave R, Drollmann A, Cerasoli F, Wurst W. Relevance of pharmacokinetics and pharmacodynamics of inhaled corticosteroids to asthma. Eur Respir J. 2006;28:1042–50.

    Article  CAS  PubMed  Google Scholar 

  96. Dufour G, Bigazzi W, Wong N, Boschini F, de Tullio P, Piel G, Cataldo D, Evrard B. Interest of cyclodextrins in spray-dried microparticles formulation for sustained pulmonary delivery of budesonide. Int J Pharm. 2015;495(2):869–78.

    Article  CAS  PubMed  Google Scholar 

  97. Kinnarinen T, Jarho P, Järvinen K, Järvinen T. Pulmonary deposition of a budesonide/gamma-cyclodextrin complex in vitro. J Control Release. 2003;90(2):197–205.

    Article  CAS  PubMed  Google Scholar 

  98. Cabral-Marques H, Almeida R. Optimisation of spray-drying process variables for dry powder inhalation (DPI) formulations of corticosteroid/cyclodextrin inclusion complexes. Eur J Pharm Biopharm. 2009;73:121–9.

    Article  CAS  PubMed  Google Scholar 

  99. Vartiainen V, et al. Aerosolization, Drug Permeation and Cellular Interaction of Dry Powder Pulmonary Formulations of Corticosteroids with Hydroxypropyl-β-Cyclodextrin as a Solubilizer. Pharm Res. 2017;34(1):25–35. https://doi.org/10.1007/s11095-016-2035-9.

    Article  CAS  PubMed  Google Scholar 

  100. Lebhardt T, Roesler S, Uusitalo HP, Kissel T. Surfactant-free redispersible nanoparticles in fast-dissolving composite microcarriers for dry-powder inhalation. Eur J Pharm Biopharm. 2011;78:90–6.

    Article  CAS  PubMed  Google Scholar 

  101. Kamel NM, et al. Inhalable dual-targeted hybrid lipid Nanocore-protein Shell composites for combined delivery of Genistein and all-trans retinoic acid to lung cancer cells. ACS Biomater Sci Eng. 2019;6(1):71–87.

    Article  PubMed  Google Scholar 

  102. Amaro MI, Tajber L, Corrigan OI, Healy AM. Co-spray dried carbohydrate microparticles: crystallisation delay/inhibition and improved aerosolization characteristics through the incorporation of hydroxypropyl-β-cyclodextrin with amorphous raffinose or trehalose. Pharm Res. 2015;32(1):180–95.

    Article  CAS  PubMed  Google Scholar 

  103. Della Bella A, Salomi E, Buttini F, Bettini R. The role of the solid state and physical properties of the carrier in adhesive mixtures for lung delivery. Expert Opin Drug Deliv. 2018 Jul;15(7):665–74.

    Article  CAS  PubMed  Google Scholar 

  104. Maeda H, Iga Y, Nakayama H. Characterization of inclusion complexes of betahistine with β-cyclodextrin and evaluation of their anti-humidity properties. J Incl Phenom Macrocycl Chem. 2016 Dec;86(3):337–42.

    Article  CAS  Google Scholar 

  105. Zhao Z, Zhang X, Cui Y, Huang Y, Huang Z, Wang G, Liang R, Pan X, Tao L, Wu C. Hydroxypropyl-β-cyclodextrin as anti-hygroscopicity agent in amorphous lactose carriers for dry powder inhalers. Powder Technol. 2019;358:29–38.

    Article  CAS  Google Scholar 

  106. Zhao Z, Huang Z, Zhang X, Huang Y, Cui Y, Ma C, Wang G, Freeman T, Lu XY, Pan X, Wu C. Low density, good flowability cyclodextrin-raffinose binary carrier for dry powder inhaler: anti-hygroscopicity and aerosolization performance enhancement. Expert Opin Drug Deliv. 2018;15(5):443–57.

    Article  CAS  PubMed  Google Scholar 

  107. Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov. 2004;3(12):1023–35.

    Article  CAS  PubMed  Google Scholar 

  108. Stella VJ, Rajewski RA. Sulfobutylether-β-cyclodextrin. Int J Pharm. 2020;583:119396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang X, Parvathaneni V, Shukla SK, Kulkarni NS, Muth A, Kunda NK, Gupta V. Inhalable resveratrol-cyclodextrin complex loaded biodegradable nanoparticles for enhanced efficacy against non-small cell lung cancer. Int J Biol Macromol. 2020 Dec 1;164:638–50.

    Article  CAS  PubMed  Google Scholar 

  110. Su W, Liang Y, Meng Z, Chen X, Lu M, Han X, Deng X, Zhang Q, Zhu H, Fu T. Inhalation of Tetrandrine-hydroxypropyl-β-cyclodextrin inclusion complexes for pulmonary fibrosis treatment. Mol Pharm. 2020;17(5):1596–607.

    Article  CAS  PubMed  Google Scholar 

  111. Magalhães GS, Gregório JF, Ramos KE, Ribeiro AT, Baroni IF, Barcelos LS, Pinho V, Teixeira MM, Santos RA, Rodrigues-Machado MG, Santos MJ. Treatment with inhaled formulation of angiotensin-(1-7) reverses inflammation and pulmonary remodeling in a model of chronic asthma. Immunobiology. 2020;151957

    Google Scholar 

  112. Evrard B, Bertholet P, Gueders M, Flament MP, Piel G, Delattre L, Gayot A, Leterme P, Foidart JM, Cataldo D. Cyclodextrins as a potential carrier in drug nebulization. J Control Release. 2004;96(3):403–10.

    Article  CAS  PubMed  Google Scholar 

  113. Sputum labeling utilizing synthetic Meso-Tetra (4-Carboxyphenyl) Porphyrin (TCPP) for detection of lung cancer. NCT03837600. https://clinicaltrials.gov/ct2/show/NCT03837600?term=Cyclodextrin+pulmonary&draw=2&rank=2

  114. Topotecan hydrochloride or cyclodextrin-based polymer-camptothecin CRLX101 in treating patients with recurrent small cell lung cancer. NCT01803269. https://clinicaltrials.gov/ct2/show/NCT01803269?term=Cyclodextrin+pulmonary&draw=2&rank=1

  115. Zhang YM, Liu YH, Liu Y. Cyclodextrin-based multistimuli-responsive supramolecular assemblies and their biological functions. Adv Mater. 2020;32(3):18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vividha Dhapte-Pawar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehta, P.P., Dhapte-Pawar, V. (2023). Multifunctional Cyclodextrins Carriers for Pulmonary Drug Delivery: Prospects and Potential. In: Mehta, P.P., Dhapte -Pawar, V. (eds) Pulmonary Drug Delivery Systems: Material and Technological Advances. Springer, Singapore. https://doi.org/10.1007/978-981-99-1923-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1923-9_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1922-2

  • Online ISBN: 978-981-99-1923-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics