Skip to main content

Deep Learning Techniques for Medical Image Segmentation and Object Recognition

  • Chapter
  • First Online:
Deep Learning and Medical Applications

Part of the book series: Mathematics in Industry ((MATHINDUSTRY,volume 40))

  • 556 Accesses

Abstract

Segmentation of a target object in the form of closed curves has many potential applications in medical imaging because it provides quantitative information related to its size and shape. Over the last few decades, many innovative methods of performing segmentation have been proposed, and these segmentation techniques are based on the basic recipes using thresholding and edge-based detection. Segmentation and classification in medical imaging are in fact experiencing a paradigm shift due to a marked and rapid advance in deep learning (DL) techniques. DL methods have nonlinear representability to extract and utilize global spatial features and local spatial features simultaneously, showing amazing overall performance in medical image segmentation. DL methods mostly lack transparency due to the black-box output, so clinicians cannot trace the output back to present the causal relationship of the output diagnosis. Therefore, in order to safely utilize DL algorithms in the medical field, it is desirable to design the models to transparently explain the reason for making the output diagnosis rather than a black-box. For explainable DL, a systematic study is needed to rigorously analyze which input characteristics affect the output of the network. Despite the lack of rigorous analysis in DL, recent rapid advances indicate that DL algorithms will improve their performance as training data and experience accumulate over time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 641–647 (1994)

    Article  Google Scholar 

  2. Alexe, B., Thomas, D., Ferrari, V.: Measuring the objectness of image windows. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2189–2202 (2012)

    Article  Google Scholar 

  3. Caselles, V., Catte, F., Francine, C., Tomeu, D., Dibos, F.: A geometric model for active contours in image processing. Numerische Mathematik 66(1), 1–31 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  5. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Proc. 10(2), 266–277 (2001)

    Google Scholar 

  6. Ching, T., Himmelstein, D.S., Beaulieu-Jones, B.K., Kalinin, A.A., Do, B.T., Way, G.P., Ferrero, Paul-Michael Agapow, E., Zietz, M., Hoffman, M.M. et al.: Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interf. 15(141), 20170387 (2018)

    Google Scholar 

  7. Cho, H.C., Sun, S., Hyun, C.M., Kwon, J.-Y., Kim, B., Park, Y., Seo, J.K.: Automated ultrasound assessment of amniotic fluid index using deep learning. Med. Image Anal. 101951

    Google Scholar 

  8. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Visi. 88(2), 303–338 (2010)

    Google Scholar 

  9. Finlayson, S.G., Bowers, J.D., Ito, J., Zittrain, J.L., Beam, A.L., Kohane, I.S.: Adversarial attacks on medical machine learning. Science 363(6433), 12871289 (2019)

    Google Scholar 

  10. Huazhu, F., Cheng, J., Yanwu, X., Wong, D.W.K., Liu, J., Cao, X.: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans Med Imaging 37(7), 1597–1605 (2018)

    Google Scholar 

  11. Gao, Y., Liu, Y., Wang, Y., Shi, Z., Jinhua, Y.: A universal intensity standardization method based on a many-to-one weak-paired cycle generative adversarial network for magnetic resonance images. IEEE Trans. Med. Imaging 38(9), 20592069 (2019)

    Google Scholar 

  12. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 580–587 (2014)

    Google Scholar 

  13. Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: Fast geodesic active contours. IEEE Trans. Image Proc. 10(10), 1467–1475 (2001)

    Article  MathSciNet  Google Scholar 

  14. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and Harnessing Adversarial Examples (2014). arXiv:1412.6572

  15. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask r-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  16. Ibtehaz, N., Rahman, M.S.: Multiresunet: rethinking the u-net architecture for multimodal biomedical image segmentation. Neural Netw. 121, 74–87 (2020)

    Google Scholar 

  17. Jang, J., Park, Y., Kim, B., Lee, S.M., Kwon, J.-Y., Seo, J.K.: Automatic estimation of fetal abdominal circumference from ultrasound images. IEEE J. Biomed. Health Inf. 22(5), 1512–1520 (2017)

    Google Scholar 

  18. Jang, T.J., Kim, K.C., Cho, H.C., Seo, J.K.: A fully automated method for 3d individual tooth identification and segmentation in dental CBCT. Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence (2021)

    Google Scholar 

  19. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  MATH  Google Scholar 

  20. Kim, B., Kim, K.C., Park, Y., Kwon, J.-Y., Jang, J., Seo, J.K.: Machine-learning-based automatic identification of fetal abdominal circumference from ultrasound images. Physiol. Measurem 39(10), 105007 (2018)

    Google Scholar 

  21. Kim, H.P. Lee, S.M., Kwon, J.-Y., Park, Y., Kim, K.C., Seo, J.K.: Automatic evaluation of fetal head biometry from ultrasound images using machine learning. Physiol. Measur. 40(6), 065009 (2019)

    Google Scholar 

  22. Kim, K.C., Cho, H.C., Jang, T.J., Choi, J.M., Seo, J.K.: Automatic detection and segmentation of lumbar vertebrae from x-ray images for compression fracture evaluation. Computer Methods and Programs in Biomedicine, p. 105833 (2020)

    Google Scholar 

  23. Kim, K.C., Yun, H.S., Kim, S., Seo, J.K.: Automation of spine curve assessment in frontal radiographs using deep learning of vertebral-tilt vector. IEEE Access 8, 84618–84630 (2020)

    Google Scholar 

  24. Lee, S.M., Kim, H.P., Jeon, K., Lee, S.-H., Seo, J.K.: Automatic 3d cephalometric annotation system using shadowed 2d image-based machine learning. Phys. Med. Biol. 64(5):055002 (2019)

    Google Scholar 

  25. Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Proc. 19(12), 3243–3254 (2010)

    Google Scholar 

  26. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., Van Der Laak, J.A., Van Ginneken, B., Sanchez, C.I.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Google Scholar 

  27. Livne, M., Rieger, J., Aydin, O.U., Taha, A.A., Akay, E.M., Kossen, T., Sobesky, J., Kelleher, J.D., Hildebrand, K., Frey, D. et al.: A u-net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease. Front. Neurosci. 13, 97 (2019)

    Google Scholar 

  28. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 158–175 (1995)

    Google Scholar 

  29. Oktay, O., Schlemper, J., Folgoc, L.L., Lee, M., Heinrich, M., Misawa, K., Mori, K., McDonagh, S., Hammerla, N.Y., Kainz, B. et al.: Attention u-net: learning where to look for the pancreas (2018). arXiv:1804.03999

  30. Osher, S., Fedkiw, R.P.: Level set methods: an overview and some recent results. J. Comput. Phys. 169(2), 463–502 (2001)

    Google Scholar 

  31. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  32. Park, H.S., Baek, J., You, S.K., Choi, J.K., Seo, J.K.: Unpaired image denoising using a generative adversarial network in x-ray ct. IEEE Access 7, 110414110425 (2019)

    Google Scholar 

  33. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  34. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  35. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241. Springer (2015)

    Google Scholar 

  36. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A., Bottou, L.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12) (2010)

    Google Scholar 

  37. Xie, C., Wu, Y., van der Maaten, L., Yuille, A.L., He, K.: Feature denoising for improving adversarial robustness. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 501–509 (2019)

    Google Scholar 

  38. Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial examples: attacks and defenses for deep learning. IEEE Trans. Neural Netw. Learn. Syst. 30(9), 2805–2824 (2019)

    Article  MathSciNet  Google Scholar 

  39. Yun, H.S., Jang, T.J., Lee, S.M., Lee, S.-H., Seo, J.K.: Learning-based local-to-global landmark annotation for automatic 3d cephalometry. Phys. Med. Biol. 65(8), 085018 (2020)

    Google Scholar 

  40. Zhou, Z., Siddiquee, M., Rahman, M., Nima, T., Jianming, L.: Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2019)

    Google Scholar 

  41. Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgements

This research was supported by Samsung Science & Technology Foundation (No. SRFC-IT1902-09). Jang and Seo were supported by a grant of the Korea Health Technology R &D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number : HI20C0127). We are deeply grateful to HDXWILL for their help and collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Keun Seo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, K.C., Jang, T.J., Seo, J.K. (2023). Deep Learning Techniques for Medical Image Segmentation and Object Recognition. In: Seo, J.K. (eds) Deep Learning and Medical Applications. Mathematics in Industry, vol 40. Springer, Singapore. https://doi.org/10.1007/978-981-99-1839-3_2

Download citation

Publish with us

Policies and ethics