Skip to main content

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 136))

  • 112 Accesses

Abstract

There are many solid–liquid mixed transportation needs in energy, environmental protection, petrochemical, mining, and metallurgy, etc. In the process of solid–liquid two-phase mixed transportation, it is easy to cause wall wear, which leads to poor reliability. At the same time, the existence of solid particles will reduce transport efficiency and performance of the pump. However, due to the different parameters such as the size, density, and concentration of solids, the complex geometry of the flow channel in the solid–liquid multiphase pump, and the high-speed rotation of the impeller, it is very difficult to study the mechanism of solid–liquid two-phase flow. At present, researchers have carried out some computational and experimental studies on the solid–liquid multiphase pump. The research status of two-phase model, two-phase hydraulic performance and wear performance of centrifugal pump are described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu C, Shen Y-M (2010) A three dimensional k-ε-Ap model for water-sediment movement. Int J Sedim Res 25(1):17–27

    Article  Google Scholar 

  2. Feng X, Li X, Cheng J, Yang C, Mao Z-S (2012) Numerical simulation of solid–liquid turbulent flow in a stirred tank with a two-phase explicit algebraic stress model. Chem Eng Sci 82:272–284

    Article  CAS  Google Scholar 

  3. Cheng Y, Guo YC, Wei F, Jin Y, Lin WY (1999) Modeling the hydrodynamics of downer reactors based on kinetic theory. Chem Eng Sci 54(13):2019–2027

    Article  CAS  Google Scholar 

  4. Zheng Y, Wan XT, Qian Z, Wei F, Jin Y (2001) Numerical simulation of the gas-particle turbulent flow in riser reactor based on the k-ε-kpp-Θ two fluid model. Chem Eng Sci 56(24):6813–6822

    Article  CAS  Google Scholar 

  5. Zeng ZX, Pan Y, Zhong C et al (2007) A second-order moment turbulence model for power law fluid with particles. J Hydrodyn 19(5):607–612

    Article  Google Scholar 

  6. Savage SB, Jeffrey DJ (1981) The Stress Tensor in a granular flow at high shear rates. J Fluid Mech 110:255–272

    Article  CAS  Google Scholar 

  7. Makkawi YT, Wright PC, Ocone R (2006) The effect of friction and inter-particle cohesive forces on the hydrodynamics of gas–solid flow: a comparative analysis of theoretical predictions and experiments. Powder Technol 163(1):69–79

    Google Scholar 

  8. Ng BH, Ding Y, Ghadiri M (2008) Assessment of the kinetic–frictional model for dense granular flow. Particuology 6(1):50–58

    Google Scholar 

  9. Fede P, Simonin O (2005) Application of a perturbated two-Maxwellian approach for the modelling of kinetic stress transfer by collision in non-equilibrium binary mixture of inelastic particles. In: ASME 2005 fluids engineering division summer meeting. American Society of Mechanical Engineers, pp 581-590

    Google Scholar 

  10. Zaichik LI, Fede P, Simonin O et al (2009) Statistical models for predicting the effect of bidisperse particle collisions on particle velocities and stresses in homogeneous anisotropic turbulent flows. Int J Multiph Flow 35(9):868–878

    Article  CAS  Google Scholar 

  11. Hertz H (1882) Über die Berührung fester elastischer Körper. on the contact of elastic solids. J Reine Angew Math 94:156–171

    Google Scholar 

  12. Johnson KL, Kendall K, Roberts AD (1971) Surface energy and contact of elastic solids. Proc R Soc Lond Ser A Math Phys Sci 324(1558):301–313

    Google Scholar 

  13. Grant G, Tabakoff W (1975) Erosion prediction in turbomachinery resulting from environmental solid particles. J Aircr 12(5):471–478

    Article  Google Scholar 

  14. Joseph GG, Zenit R, Hunt ML et al (2001) Particle–wall collisions in a viscous fluid. J Fluid Mech 433(433):329–346

    Article  CAS  Google Scholar 

  15. Fu J, Adams MJ, Reynolds GK et al (2004) Impact deformation and rebound of wet granules. Powder Technol 140(3):248–257

    Article  CAS  Google Scholar 

  16. Mueller P, Antonyuk S, Stasiak M et al (2011) The normal and oblique impact of three types of wet granules. Granular Matter 13(4):455–463

    Article  Google Scholar 

  17. Sommerfeld M, Huber N (1999) Experimental analysis and modelling of particle-wall collisions. Int J Multiph Flow 25(6–7):1457–1489

    Article  CAS  Google Scholar 

  18. Hastie BD (2013) Experimental measurement of the coefficient of restitution of irregular shaped particles impacting on horizontal surfaces. Chem Eng Sci 101:828–836

    Article  CAS  Google Scholar 

  19. Dong H, Moys MH (2006) Experimental study of oblique impacts with initial spin. Powder Technol 161(1):22–31

    Article  CAS  Google Scholar 

  20. Gibson L, Gopalan B, Pisupati SV et al (2013) Image analysis measurements of particle coefficient of restitution for coal gasification applications. Powder Technol 247:30–43

    Google Scholar 

  21. Troiano M, Solimene R, Salatino P et al (2016) Multiphase flow patterns in entrained-flow slagging gasifiers: physical modelling of particle–wall impact at near-ambient conditions. Fuel Process Technol 141

    Google Scholar 

  22. Dong M, Li X, Mei Y et al (2018) Experimental and theoretical analyses on the effect of physical properties and humidity of fly ash impacting on a flat surface. J Aerosol Sci 117:85–99

    Google Scholar 

  23. Li X, Dong M, Li S et al (2019) Experimental and theoretical studies of the relationship between dry and humid normal restitution coefficients. J Aerosol Sci 129:16–27

    Article  CAS  Google Scholar 

  24. Mueller T, Gollwitzer F, Kruelle CA et al (2013) Scaling of the normal coefficient of restitution for wet impacts. American Institute of Physics

    Google Scholar 

  25. Müller T, Huang K (2016) Influence of the liquid film thickness on the coefficient of restitution for wet particles. Phys Rev E 93(4):042904

    Google Scholar 

  26. Nakahashi K, Togashi F, Sharov D (2000) Intergrid-boundary definition method for overset unstructured grid approach. AIAA J 38(11):2077–2084

    Article  Google Scholar 

  27. Villa A, Formaggia L (2010) Implicit tracking for multi-fluid simulations. J Comput Phys 229(16):5788–5802

    Article  CAS  Google Scholar 

  28. Gruber B, Carstens V (1998) Computation of the unsteady transonic flow in harmonically oscillating turbine cascades taking into account viscous effects. J Turbomach 120(1):104–111

    Article  Google Scholar 

  29. Zhao P, Heinrich JC, Poirier DR (2006) Numerical modeling of fluid-particle interactions. Comput Methods Appl Mech Eng 195(41):5780–5796

    Article  Google Scholar 

  30. Masud A, Hughes TJR (1997) A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems. Comput Methods Appl Mech Eng 146(1):91–126

    Article  Google Scholar 

  31. Blom FJ (2000) Considerations on the spring analogy. Int J Numer Meth Fluids 32(6):647–668

    Article  Google Scholar 

  32. Batina JT (1990) Unsteady Euler airfoil solutions using unstructured dynamic meshes. AIAA J 28(8):1381–1388

    Article  Google Scholar 

  33. Hassan O, Probert EJ, Morgan K (1998) Unstructured mesh procedures for the simulation of three-dimensional transient compressible inviscid flows with moving boundary components. Int J Numer Meth Fluids 27(1–4):41–55

    Article  Google Scholar 

  34. Slikkerveer PJ, Van Lohuizen EP, O’Brien SBG (1996) An implicit surface tension algorithm for Picard solvers of surface-tension-dominated free and moving boundary problems. Int J Numer Methods Fluids 22(9):851–865

    Google Scholar 

  35. Reuther J, Alonso JJ, Rimlinger MJ, Jameson A (1999) Aerodynamic shape optimization of supersonic aircraft configurations via an adjoint formulation on distributed memory parallel computers. Comput Fluids 28(4):675–700

    Article  Google Scholar 

  36. Piperno S (1997) Explicit/implicit fluid/structured staggered procedures with a structural prediction and fluid subcycling for 2D inviscid aeroelastic simulation. Int J Numer Meth Fluids 25(10):1207–1226

    Article  CAS  Google Scholar 

  37. Farhat C, Lesoinne M, Maman N (1995) Mixed explicit/implicit time integration of coupled aeroelastic problems: three-field formulation, geometric conservation and distributed solution. Int J Numer Meth Fluids 21(10):807–835

    Article  Google Scholar 

  38. Robinson BA, Yang HTY, Batina JT (1991) Aeroelastic analysis of wings using the Euler equations with a deforming mesh. J Aircr 28(11):781–788

    Article  Google Scholar 

  39. Liu XQ, Qin N, Xia H (2006) Fast dynamic grid deformation based on Delaunay graph mapping. J Comput Phys 211(2):405–423

    Article  Google Scholar 

  40. Pin FD, Idelsohn S, Oñate E et al (2007) The ALE/Lagrangian particle finite element method: a new approach to computation of free-surface flows and fluid–object interactions. Comput Fluids 36(1):27–38

    Article  Google Scholar 

  41. Paluszny A, Zimmerman RW (2013) Numerical fracture growth modeling using smooth surface geometric deformation. Eng Fract Mech 108:19–36

    Article  Google Scholar 

  42. Li J, Gao Z, Huang J et al (2013) Aerodynamic design optimization of nacelle/pylon position on an aircraft. Chin J Aeronaut 26(4):850–857

    Article  CAS  Google Scholar 

  43. Bogaers AEJ, Kok S, Malan AG (2011) Highly efficient optimization mesh movement method based on proper orthogonal decomposition. Int J Numer Meth Eng 86(8):935–952

    Article  Google Scholar 

  44. Nakahashi K, Deiwert GS (1987) Self-adaptive-grid method with application to airfoil flow. AIAA J 25(4):513–520

    Article  CAS  Google Scholar 

  45. Nakahashi K, Deiwert GS (1986) Three-dimensional adaptive grid method. AIAA J 24(6):948–954

    Article  CAS  Google Scholar 

  46. Zhang L, Chang X, Duan X et al (2012) Applications of dynamic hybrid grid method for three-dimensional moving/deforming boundary problems. Comput Fluids 62:45–63

    Article  Google Scholar 

  47. Peskin CS (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10(2):252–271

    Article  Google Scholar 

  48. Mittal R, Iccarino G (2005) Immersed boundary methods. Annu Rev Fluid Mech 37:239–261

    Article  Google Scholar 

  49. Mohd-Yusof J. Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries. Annu Res Briefs Cent Turbul Res 1997:317–327

    Google Scholar 

  50. Mohd-Yusof J (1998) Development of immersed boundary methods for complex geometries. Annu Res Briefs Cent Turbul Res 325–336

    Google Scholar 

  51. Peskth CS (2002) The immersed boundary method. Acta Numer 11:479–517

    Article  Google Scholar 

  52. Fadlun EA, Verzicco R, Orlandi P et al (2000) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys 161(1):35–60

    Article  Google Scholar 

  53. Kim J, Kim D, Choi H (2001) An immersed-boundary finite-volume method for simulations of flow in complex geometries. J Comput Phys 171(1):132–150

    Article  CAS  Google Scholar 

  54. Peskin CS, Printz ABF (1993) Improved volume conservation in the computation of flows with immersed elastic boundaries. J Comput Phys 105(1):33–46

    Article  Google Scholar 

  55. Roma AM, Peskth CS, Berger MJ (1999) An adaptive version of the immersed boundary method. J Comput Phys 153(2):509–534

    Article  Google Scholar 

  56. Majumdar S, Laccarino G, Durbin PA (2001) RANS solver with adaptive structured boundary non-conforming grids. Annu Res Briefs 353–366

    Google Scholar 

  57. Kim D, Choi H (2006) Immersed boundary method for flow around an arbitrarily moving body. J Comput Phys 212(2):622–680

    Article  Google Scholar 

  58. Huang WX, Sung HJ (2007) Improvement of mass source/sink for an immersed boundary method. Int J Numer Meth Fluids 53(11):1659–1671

    Article  Google Scholar 

  59. Boffi D, Gastaldi L (2003) A finite element approach for the immersed boundary method. Comput Struct 81(8):491–501

    Article  Google Scholar 

  60. Wang XD, Liu WK (2004) Extended immersed boundary method using FEM and RKPM. Comput Methods Appl Mech Eng 193(12):1305–1321

    Article  Google Scholar 

  61. Verzicco R, Mohd-Yusof J, Orlandi P et al (2000) Large eddy simulation in complex geometric configurations using boundary forces. AIAA J 38(3):427–433

    Article  Google Scholar 

  62. Balaras E (2004) Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations. Comput Fluid 33(3):375–404

    Article  Google Scholar 

  63. Hoomans BPB, Kuipers JAM, Briels WJ et al (1996) Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: a hard-sphere approach. Chem Eng Sci 51(1):99–118

    Article  CAS  Google Scholar 

  64. Goldschmidt MJV, Beetstra R, Kuipers JAM (2004) Hydrodynamic modelling of dense gas-fluidised beds: comparison and validation of 3D discrete particle and continuum models. Powder Technol 142(1):23–47

    Article  CAS  Google Scholar 

  65. Tsuji Y, Tanaka T, Ishida T (1992) Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol 71(3):239–250

    Article  CAS  Google Scholar 

  66. Rong D, Horio M (2001) Behavior of particles and bubbles around immersed tubes in a fluidized bed at high temperature and pressure: a DEM simulation. Int J Multiph Flow 27(1):89–105

    Article  CAS  Google Scholar 

  67. Kuwagi K, Horio M (2002) A numerical study on agglomerate formation in a fluidized bed of fine cohesive particles. Chem Eng Sci 57(22):4737–4744

    Article  CAS  Google Scholar 

  68. Yamada Y, Sakai M (2013) Lagrangian-Lagrangian simulations of solid–liquid flows in a bead mill. Powder Technol 239:105–114

    Article  CAS  Google Scholar 

  69. Tsuji Y, Tanaka T, Yonemura S (1998) Cluster patterns in circulating fluidized beds predicted by numerical simulation (discrete particle model versus two-fluid model). Powder Technol 95(3):254–264

    Article  CAS  Google Scholar 

  70. Shuyan W, Huanpeng L, Huilin L et al (2005) Flow behavior of clusters in a riser simulated by direct simulation Monte Carlo method. Chem Eng J 106(3):197–211

    Google Scholar 

  71. Huilin L, Zhiheng S, Ding J et al (2006) Numerical simulation of bubble and particles motions in a bubbling fluidized bed using direct simulation Monte-Carlo method. Powder Technol 169(3):159–171

    Google Scholar 

  72. Wang S, Li X, Lu H et al (2009) DSMC prediction of granular temperatures of clusters and dispersed particles in a riser. Powder Technol 192(2):225–233

    Article  CAS  Google Scholar 

  73. Ge W, Li J (2003) Macro-scale phenomena reproduced in microscopic systems-pseudo-particle modeling of fluidization. Chem Eng Sci 58(8):1565–1585

    Article  CAS  Google Scholar 

  74. Sun QH, Li JH (1999) A novel pseudo-particle model for gas in gas–solid two-phase flow. Eng Chem Metall 3:019

    Google Scholar 

  75. Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comput Phys 191(2):448–475

    Article  Google Scholar 

  76. Li XK, Chu XH, Sheng DC (2007) A saturated discrete particle model and characteristic-based SPH method in granular materials. Int J Numer Methods Eng 72(7):858–882

    Google Scholar 

  77. Ferrari A, Dumbser M, Toro EF et al (2009) A new 3D parallel SPH scheme for free surface flows. Comput Fluids 38(6):1203–1217

    Article  Google Scholar 

  78. Grenier N, Antuono M, Colagrossi A et al (2009) An Hamiltonian interface SPH formulation for multi-fluid and free surface flows. J Comput Phys 228(22):8380–8393

    Article  Google Scholar 

  79. Das AK, Das PK (2009) Bubble evolution through submerged orifice using smoothed particle hydrodynamics: basic formulation and model validation. Chem Eng Sci 64(10):2281–2290

    Article  CAS  Google Scholar 

  80. Shao SD (2010) Incompressible SPH flow model for wave interactions with porous media. Coast Eng 57(3):304–316

    Article  Google Scholar 

  81. Shakibaeinia A, Jin YC (2011) A mesh-free particle model for simulation of mobile-bed dam break. Adv Water Resour 34(6):794–807

    Article  Google Scholar 

  82. Akbari H, Namin MM (2013) Moving particle method for modeling wave interaction with porous structures. Coast Eng 74:59–73

    Article  Google Scholar 

  83. Yuan SQ, Zhang PF, Zhang JF (2004) Numerical simulation of 3-D dense solid–liquid two-phase turbulent flow in a non-clogging mud pump. Chin J Mech Eng 17(4):623–627

    Article  Google Scholar 

  84. Engin T, Gur M (2001) Performance characteristics of centrifugal pump impeller with running tip clearance pumping solid–liquid mixtures. J Fluids Eng 123(3):532–538

    Article  Google Scholar 

  85. Gandhi BK, Singh SN, Seshadn V (2002) Effect of speed on the performance characteristics of a centrifugal slurry pump. J Hydraul Eng 128(2):225–233

    Article  Google Scholar 

  86. Mehta M, Kadambi JR, Sastry S et al (2004) Study of particulate flow in the impeller of a slurry pump using PIV. In: ASME 2004 heat transfer/fluids engineering summer conference (HT-FED2004), pp 489–499

    Google Scholar 

  87. Zhang Y, Li Y, Cui B et al (2013) Numerical simulation and analysis of solid–liquid two-phase flow in centrifugal pump. Chin J Mech Eng 26(1):53–60

    Article  CAS  Google Scholar 

  88. Wang PW, Zhao J, Zou WJ et al (2012) Experimental study and numerical simulation of the solid-phase particles’ influence on outside characteristics of slurry pump. IOP Conf Ser Earth Environ Sci 15(6):062057

    Google Scholar 

  89. Zhang Y, Li Y, Zhu Z et al (2014) Computational analysis of centrifugal pump delivering solid–liquid two-phase flow during startup period. Chin J Mech Eng 27(1):178–185

    Article  CAS  Google Scholar 

  90. Li Y, Zhu Z, He W et al (2012) Numerical simulation and experimental research on the influence of solid-phase characteristics on centrifugal pump performance. Chin J Mech Eng 25(6):1184–1189

    Article  Google Scholar 

  91. Chandel S, Singh SN, Seshadri V (2011) A comparative study on the performance characteristics of centrifugal and progressive cavity slurry pumps with high concentration fly ash slurries. Part Sci Technol 29(4):378–396

    Article  CAS  Google Scholar 

  92. Liu JH, Zhu MY (2010) Numeration simulation of solid–liquid two-phase flow in centrifugal sewerage pump. Appl Mech Mater 44–47:345–348

    Article  Google Scholar 

  93. Zhao BJ, Huang ZF, Chen HL et al (2012) Numerical investigation of solid–liquid two phase flow in a non-clogging centrifugal pump at off-design conditions. IOP Conf Ser Earth Environ Sci 15(6):062020

    Article  Google Scholar 

  94. Wei L, Shi W, Jiang X et al (2012) Analysis on internal solid–liquid two-phase flow in the impellers of sewage pump. Proc Eng 31(1):170–175

    Article  CAS  Google Scholar 

  95. Salim B, Bajawi HY, Suhaibani Z (2015) Performance of a centrifugal slurry pump with clinker slurry. Indian J Sci Technol 8(12)

    Google Scholar 

  96. Wang Z, Qian Z (2017) Effects of concentration and size of silt particles on the performance of a double-suction centrifugal pump. Energy 123:36–46

    Article  Google Scholar 

  97. Cheng W, Gu B, Shao C, Wang Y (2017) Hydraulic characteristics of molten salt pump transporting solid–liquid two-phase medium. Nucl Eng Des 324:220–230

    Google Scholar 

  98. Tressia G, Penagos JJ, Sinatora A (2017) Effect of abrasive particle size on slurry abrasion resistance of austenitic and martensitic steels. Wear 376–377:63–69

    Google Scholar 

  99. Zhao W, Zhao G (2018) Numerical investigation on the transient characteristics of sediment-laden two-phase flow in a centrifugal pump. J Mech Sci Technol 32(1):167–176

    Article  Google Scholar 

  100. Hitoshi F, Takuya N, Hirohiko T (2005) Performance characteristics of a gas–liquid–solid airlift pump. Int J Multiph Flow 31:1116–1133

    Article  Google Scholar 

  101. Liu X, Deng H, Ma W (2009) Numerical analysis for solid–liquid two-phase flow field of draining-sand jet pump. In: The 2009 IEEE international conference on mechatronics and automation, pp 4116–4121

    Google Scholar 

  102. Angst R, Kraume M (2006) Experimental investigations of stirred solid/liquid systems in three different scales: particle distribution and power consumption. Chem Eng Sci 61:2864–2870

    Article  CAS  Google Scholar 

  103. Wang F, Mao Z, Wang Y (2006) Measurement of phase holdups in liquid–liquid–solid three-phase stirred tanks and CFD simulation. Chem Eng Sci 61:7535–7550

    Google Scholar 

  104. Tahsin E, Mesut G (2001) Performance characteristics of a centrifugal pump impeller with running tip clearance pumping solid–liquid mixtures. J Fluids Eng 123:533–538

    Google Scholar 

  105. Saleh W, Bowden RC, Hassan IG (2010) Two-phase flow structure in dual discharges-stereo PIV measurements. Exp Therm Fluid Sci 34:1016–1028

    Google Scholar 

  106. Caridad JA, Kenyery F (2005) Slip factor for centrifugal impellers under single and two-phase flow conditions. J Fluids Eng 127:317–321

    Google Scholar 

  107. Shi B, Wei J, Zhang Y (2017) A novel experimental facility for measuring internal flow of solid–liquid two-phase flow in a centrifugal pump by PIV. Int J Multiph Flow 89:266–276

    Article  CAS  Google Scholar 

  108. Torabi R, Nourbakhsh SA (2016) The effect of viscosity on performance of a low specific speed centrifugal pump. Int J Rotating Mach 3878357:1–9

    Article  Google Scholar 

  109. Tarodiya R, Gandhi BK (2019) Numerical simulation of a centrifugal slurry pump handling solid–liquid mixture: effect of solids on flow field and performance. Adv Powder Technol 30(10):1–15

    Article  Google Scholar 

  110. Peng G, Huang X, Zhou L et al (2020) Solid–liquid two-phase flow and wear analysis in a large-scale centrifugal slurry pump. Eng Fail Anal 114:104602

    Google Scholar 

  111. Wu B, Wang X, Liu H et al (2015) Numerical simulation and analysis of solid–liquid two-phase three-dimensional unsteady flow in centrifugal slurry pump. J Cent South Univ 22:3008–3016

    Google Scholar 

  112. Huang S, Su X, Qiu G (2015) Transient numerical simulation for solid–liquid flow in a centrifugal pump by DEM-CFD coupling. Eng Appl Comput Fluid Mech 9(1):411–418

    Google Scholar 

  113. Finnie I (1958) The mechanism of erosion of ductile metals. In: Proceedings of the 3rd US national congress of applied mechanics, Rhode Island

    Google Scholar 

  114. Finnie I (1960) Erosion of surfaces by solid particles. Wear 3(2):87–103

    Article  Google Scholar 

  115. Bitter JGA (1963) A study of erosion phenomena part I. Wear 6(1):5–21

    Article  Google Scholar 

  116. Bitter JGA (1963) A study of erosion phenomena: part II. Wear 6(3):169–190

    Article  Google Scholar 

  117. Neilson JH, Gilchrist A (1968) Erosion by a stream of solid particles. Wear 11(2):111–122

    Article  Google Scholar 

  118. Sheldon GL, Kanhere A (1972) An investigation of impingement erosion using single particles. Wear 21(1):195–209

    Article  CAS  Google Scholar 

  119. Tilly GP (1973) A two stage mechanism of ductile erosion. Wear 23(1):87–96

    Article  Google Scholar 

  120. Tabakoff W, Kotwal R, Hamed A (1979) Erosion study of different materials affected by coal ash particles. Wear 52(1):161–173

    Article  CAS  Google Scholar 

  121. Hutchings IM (1981) A model for the erosion of metals by spherical particles at normal incidence. Wear 70(3):269–281

    Article  CAS  Google Scholar 

  122. McLaury BS (1993) A model to predict solid particle erosion in oilfield geometries. University of Tulsa

    Google Scholar 

  123. Zhang Y, McLaury BS, Shirazi SA et al (2006) Simulations of particle-wall-turbulence interactions, particle motion and erosion in with a commercial CFD code. In: ASME 2006 2nd joint US-European fluids engineering summer meeting collocated with the 14th international conference on nuclear engineering. American Society of Mechanical Engineers, pp 1639–1654

    Google Scholar 

  124. Zhang Y, Reuterfors EP, McLaury BS et al (2007) Comparison of computed and measured particle velocities and erosion in water and air flows. Wear 263(1):330–338

    Article  CAS  Google Scholar 

  125. Haugen K, Kvernvold O, Ronold A et al (1995) Sand erosion of wear-resistant materials: erosion in choke valves. Wear 186:179–188

    Article  Google Scholar 

  126. Oka YI, Okamura K, Yoshida T (2005) Practical estimation of erosion damage caused by solid particle impact: part 1: effects of impact parameters on a predictive equation. Wear 259(1):95–101

    Article  CAS  Google Scholar 

  127. Oka YI, Yoshida T (2005) Practical estimation of erosion damage caused by solid particle impact: part 2: mechanical properties of materials directly associated with erosion damage. Wear 259(1):102–109

    Article  CAS  Google Scholar 

  128. Chong YW, Solnordal C, Swallow A et al (2013) Experimental and computational modelling of solid particle erosion in a pipe annular cavity. Wear 303(1–2):109–129

    Google Scholar 

  129. Andrews N, Giourntas L, Galloway AM et al (2014) Effect of impact angle on the slurry erosion-corrosion of Stellite 6 and SS316. Wear 320(s 1–2):143–151

    Google Scholar 

  130. Kesana N, Vieira RE, Mclaury BS et al (2014) Experimental study of sand particle concentration profiles in straight and pipe elbow for horizontal multiphase flow. J Energy Res Technol 136(3):033001

    Article  Google Scholar 

  131. Arabnejad H, Shirazi SA, Mclaury BS et al (2015) The effect of erodent particle hardness on the erosion of stainless steel. Wear 332–333:1098–1103

    Article  Google Scholar 

  132. Patel M, Patel D, Sekar S et al (2016) Study of solid particle erosion behaviour of SS 304 at room temperature. Proc Technol 23:288–295

    Article  Google Scholar 

  133. Vieira RE, Parsi M, Zahedi P et al (2017) Electrical Resistance probe measurements of solid particle erosion in multiphase annular flow. Wear 2017(382–383):15–28

    Article  Google Scholar 

  134. Araoye AA, Badr HM, Ahmed WH et al (2017) Erosion of a multistage orifice due to liquid–solid flow. Wear 390–391

    Google Scholar 

  135. Song XG, Park JH, Kim SG et al (2013) Performance comparison and erosion prediction of jet pumps by using a numerical method. Math Comput Model 57(1):245–253

    Article  Google Scholar 

  136. Zhong Y, Minemura K (1996) Measurement of erosion due to particle impingement and numerical prediction of wear in pump casing. Wear 199(1):36–44

    Article  CAS  Google Scholar 

  137. Bross S, Addie G (2002) Prediction of impeller nose wear behaviour in centrifugal slurry pumps. Exp Thermal Fluid Sci 26(6):841–849

    Article  Google Scholar 

  138. Kadambi JR, Charoenngam P, Subramanian A, Wernet MP, Sankovic JM, Addie G, Courtwright R (2004) Investigations of particle velocities in s slurry pump using PIV: part 1, the tongue and adjacent channel flow. J Energy Res Technol 126:271–278

    Article  Google Scholar 

  139. Roco MC, Addie GR, Dennis J et al (1984) Modeling erosion wear in centrifugal slurry pumps. Proc Hydrotransport 9:291–315

    Google Scholar 

  140. Li Y, Zhu ZC, He ZH et al (2010) Abrasion characteristic analyses of solid–liquid two-phase centrifugal pump. J Therm Sci 20(3):283–287

    Article  Google Scholar 

  141. Batalović V (2010) Erosive wear model of slurry pump impeller. J Tribol 132(2):1–5

    Article  Google Scholar 

  142. Pagalthivarthi KV, Gupta PK, Tyagi V et al (2011) CFD prediction of erosion wear in centrifugal slurry pumps for dilute slurry flows. J Comput Multiph Flows 3(4):225–246

    Article  CAS  Google Scholar 

  143. Dong XG, Zhang HL, Wang XY (2009) Finite element analysis of wear for centrifugal slurry pump. In: The 6th international conference on mining science and technology, pp 1532–1538

    Google Scholar 

  144. Zhang H, Tan Y, Yang D et al (2012) Numerical investigation of the location of maximum erosive wear damage in elbow: effect of slurry velocity, bend orientation and angle of elbow. Powder Technol 217(3):467–476

    Article  CAS  Google Scholar 

  145. Duarte CAR, Souza FJD, Santos VFD (2015) Numerical investigation of mass loading effects on elbow erosion. Powder Technol 283:593–606

    Article  CAS  Google Scholar 

  146. Chen X, Mclaury BS, Shirazi SA (2006) Numerical and experimental investigation of the relative erosion severity between plugged tees and elbows in dilute gas/solid two-phase flow. Wear 261(7):715–729

    Article  CAS  Google Scholar 

  147. Blanchard DJ, Griffith P, Rabinowicz E (1984) Erosion of a pipe bend by solid particles entrained in water. J Eng Ind 106(3):213–217

    Google Scholar 

  148. Peng W, Cao X (2016) Numerical simulation of solid particle erosion in pipe bends for liquid–solid flow. Powder Technol 294:266–279

    Article  CAS  Google Scholar 

  149. Coker EH, Dan VP (2017) The erosion of horizontal sand slurry pipelines resulting from inter-particle collision. Wear 400–401:74–81

    Google Scholar 

  150. Zhang E, Zeng D, Zhu H et al (2018) Numerical simulation for erosion effects of three-phase flow containing sulfur particles on elbows in high sour gas fields. Petroleum 4(2):158–167

    Google Scholar 

  151. Pei J, Lui A, Zhang Q et al (2018) Numerical investigation of the maximum erosion zone in elbows for liquid-particle flow. Powder Technol 333:47–59

    Google Scholar 

  152. Zhu H, Li S (2018) Numerical analysis of mitigating elbow erosion with a rib. Powder Technol 330:445–460

    Google Scholar 

  153. Uzi A, Ami YB, Levy A (2016) Erosion prediction of industrial conveying pipelines. Powder Technol 309:49–60

    Article  Google Scholar 

  154. Florio LA (2017) Estimation of particle impact based erosion using a coupled direct particle—compressible gas computational fluid dynamics model. Powder Technol 305:625–651

    Article  CAS  Google Scholar 

  155. Wang K, Li X, Wang Y et al (2016) Numerical investigation of the erosion behavior in elbows of petroleum pipelines. Powder Technol 314:490–499

    Google Scholar 

  156. Beinert S, Fragnière G, Schilde C et al (2015) Analysis and modelling of bead contacts in wet-operating stirred media and planetary ball mills with CFD–DEM simulations. Chem Eng Sci 134:648–662

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuchao Zhu .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, Z., Li, Y., Lin, Z. (2023). Introduction. In: Solid-Liquid Two-Phase Flow in Centrifugal Pump. Fluid Mechanics and Its Applications, vol 136. Springer, Singapore. https://doi.org/10.1007/978-981-99-1822-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1822-5_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1821-8

  • Online ISBN: 978-981-99-1822-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics