Skip to main content

Perfect Optical Vortices

  • Chapter
  • First Online:
Optical Vortex Beams

Part of the book series: Advances in Optics and Optoelectronics ((AOO))

  • 439 Accesses

Abstract

Once the fundamental mode waist is fixed, the beam size (transverse spot diameter) of a vortex beam is determined by its topological charge. The larger the absolute value of the topological charge, the larger the spot diameter and the larger the hollow region. This property makes it very limited in some applications. For example, in optical tweezers, a larger topological charge but a smaller spot diameter are usually required to achieve better capture performance, which can only be achieved by minimising the radius of the fundamental mode waist for conventional vortex beams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ostrovsky AS, Rickenstorff-Parrao C, Arrizón V. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator. Opt Lett. 2013;38(4):534–6.

    Article  ADS  Google Scholar 

  2. Arfken GB, Weber HJ. Mathematical methods for physicists. Harcourt/Academic, 2001.

    Google Scholar 

  3. Vaity P, Rusch L. Perfect optical vortices: Fourier transformationation of a Bessel beam. Opt Lett 2015:40(4):597.

    Google Scholar 

  4. Gradshteyn IS, Ryzhik IM. Table of integrals, series and products. Elesvier Academic Press, 2001.

    Google Scholar 

  5. Arrizón V, Ruiz U, Sánchezdelallave D, et al. Optimum generation of annular vortices using phase diffractive optical elements. Opt Lett. 2015;40(7):1173–6.

    Article  ADS  Google Scholar 

  6. Fu S, Gao C, Wang T, et al. Detection of topological charges for coaxial multiplexed perfect vortices. Singapore: CLEO-PR/OECC/PGC 2017.

    Google Scholar 

  7. Fu S, Wang T, Gao C. Generating perfect polarization vortices through encoding liquid-crystal display devices. Appl Opt. 2016;55(23):6501–5.

    Article  ADS  Google Scholar 

  8. Li P, Zhang Y, Liu S, et al. Generation of perfect vectorial vortex beams. Opt Lett. 2016;41(10):2205–8.

    Article  ADS  Google Scholar 

  9. Wang T, Fu S, Gao C, He F. Generation of perfect polarization vortices using combined gratings in single spatial light modulator. Appl Opt. 2017;56(27):7567–71.

    Article  ADS  Google Scholar 

  10. Fu S, Wang T, Gao C. Perfect optical vortex array with controllable diffraction order and topological charge. J Opt Soc Am A. 2016;33(9):1836–42.

    Article  ADS  Google Scholar 

  11. Li X, Ma H, Zhang H, et al. Close-packed optical vortex lattices with controllable structures. Opt Express. 2018;26(18):22965–75.

    Article  ADS  Google Scholar 

  12. Fu S, Gao C, Wang T, et al. Simultaneous generation of multiple perfect polarization vortices with selective spatial states in various diffraction orders. Opt Lett. 2016;41(23):5454–7.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyao Fu .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Tsinghua University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fu, S., Gao, C. (2023). Perfect Optical Vortices. In: Optical Vortex Beams. Advances in Optics and Optoelectronics. Springer, Singapore. https://doi.org/10.1007/978-981-99-1810-2_8

Download citation

Publish with us

Policies and ethics