Skip to main content

Biosynthesis of β-Amino Acid-Containing Macrolactam Polyketides

  • Chapter
  • First Online:
New Tide of Natural Product Chemistry
  • 288 Accesses

Abstract

β-Amino acid-containing macrolactam antibiotics are an important class of macrocyclic polyketides in Actinobacteria. These macrolactam antibiotics are biosynthesized from various β-amino acid starter units, contributing to their structural diversity. In this chapter, the biosynthetic mechanisms of these β-amino acid-containing macrolactam polyketides are summarized. Conserved biosynthetic machinery is used to incorporate a β-amino acid starter unit into the polyketide skeleton. The VinN-type adenylation enzyme loads a specific β-amino acid unit onto an acyl carrier protein, and the VinM-type adenylation enzyme aminoacylates the β-amino acid moiety to form a dipeptidyl unit, which is subsequently loaded onto polyketide synthases for polyketide chain elongation. A terminal aminoacyl moiety on biosynthetic intermediates is a characteristic feature in the biosynthesis of β-amino acid-containing macrolactam polyketides. Structural analysis of key biosynthetic enzymes has revealed the basis of selective recognition of β-amino acids and dipeptidyl moieties of polyketide intermediates. Biosynthetic engineering strategies have enabled the production of macrolactam polyketide derivatives in which a β-amino acid substrate analog is incorporated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hertweck, C.: The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Ed. 48, 4688–4716 (2009)

    Article  CAS  Google Scholar 

  2. Alvarez, R., de Lera, A.R.: Natural polyenic macrolactams and polycyclic derivatives generated by transannular pericyclic reactions: optimized biogenesis challenging chemical synthesis. Nat. Prod. Rep. 38, 1136–1220 (2021)

    Article  CAS  PubMed  Google Scholar 

  3. Zhao, W., Jiang, H., Liu, X.W., Zhou, J., Wu, B.: Polyene macrolactams from marine and terrestrial sources: structure, production strategies, biosynthesis and bioactivities. Mar. Drugs 20, 360 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Miyanaga, A., Kudo, F., Eguchi, T.: Mechanisms of β-amino acid incorporation in polyketide macrolactam biosynthesis. Curr. Opin. Chem. Biol. 35, 58–64 (2016)

    Article  CAS  PubMed  Google Scholar 

  5. Shindo, K., Kamishohara, M., Odagawa, A., Matsuoka, M., Kawai, H.: Vicenistatin, a novel 20-membered macrocyclic lactam antitumor antibiotic. J. Antibiot. 46, 1076–1081 (1993)

    Article  CAS  Google Scholar 

  6. Liang, Z., Li, J., Ling, C., Xu, R., Yi, X., Ju, J., Li, Q.: Characterization of the aminosugar biosynthetic and regulatory genes of vicenistatin in Monodonata labio-associated Streptomyces parvus SCSIO Mla-L010. J. Nat. Prod. 85, 256–263 (2022)

    Article  CAS  PubMed  Google Scholar 

  7. Nogawa, T., Okano, A., Takahashi, S., Uramoto, M., Konno, H., Saito, T., Osada, H.: Verticilactam, a new macrolactam isolated from a microbial metabolite fraction library. Org. Lett. 12, 4564–4567 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. Nogawa, T., Terai, A., Amagai, K., Hashimoto, J., Futamura, Y., Okano, A., Fujie, M., Satoh, N., Ikeda, H., Shin-Ya, K., Osada, H., Takahashi, S.: Heterologous expression of the biosynthetic gene cluster for verticilactam and identification of analogues. J. Nat. Prod. 83, 3598–3605 (2020)

    Article  CAS  PubMed  Google Scholar 

  9. Schulz, D., Nachtigall, J., Riedlinger, J., Schneider, K., Poralla, K., Imhoff, J.F., Beil, W., Nicholson, G., Fiedler, H.P., Süssmuth, R.D.: Piceamycin and its N-Acetylcysteine adduct is produced by Streptomyces sp. GB 4–2. J. Antibiot. 62, 513–518 (2009)

    Google Scholar 

  10. Shin, Y.H., Kang, S., Byun, W.S., Jeon, C.W., Chung, B., Beom, J.Y., Hong, S., Lee, J., Shin, J., Kwak, Y.S., Lee, S.K., Oh, K.B., Yoon, Y.J., Oh, D.C.: Absolute configuration and antibiotic activity of piceamycin. J. Nat. Prod. 83, 277–285 (2020)

    Article  CAS  PubMed  Google Scholar 

  11. Shin, Y.H., Beom, J.Y., Chung, B., Shin, Y., Byun, W.S., Moon, K., Bae, M., Lee, S.K., Oh, K.B., Shin, J., Yoon, Y.J., Oh, D.C.: Bombyxamycins A and B, cytotoxic macrocyclic lactams from an intestinal bacterium of the silkworm Bombyx mori. Org. Lett. 21, 1804–1808 (2019)

    Article  CAS  PubMed  Google Scholar 

  12. Hoshino, S., Onaka, H., Abe, I. Activation of silent biosynthetic pathways and siscovery of novel secondary metabolites in actinomycetes by co-culture with mycolic acid-containing bacteria. J. Ind. Microbiol. Biotechnol. 46, 363–374 (2019)

    Article  CAS  PubMed  Google Scholar 

  13. Derewacz, D.K., Covington, B.C., McLean, J.A., Bachmann, B.O.: Mapping microbial response metabolomes for induced natural product discovery. ACS Chem. Biol. 10, 1998–2006 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hoshino, S., Okada, M., Wakimoto, T., Zhang, H., Hayashi, F., Onaka, H., Abe, I.: Niizalactams A-C, multicyclic macrolactams isolated from combined culture of Streptomyces with mycolic acid-containing bacterium. J. Nat. Prod. 78, 3011–3017 (2015)

    Article  CAS  PubMed  Google Scholar 

  15. Ogasawara, Y., Katayama, K., Minami, A., Otsuka, M., Eguchi, T., Kakinuma, K.: Cloning, sequencing, and functional analysis of the biosynthetic gene cluster of macrolactam antibiotic vicenistatin in Streptomyces halstedii. Chem. Biol. 11, 79–86 (2004)

    CAS  PubMed  Google Scholar 

  16. Shinohara, Y., Kudo, F., Eguchi, T. natural protecting group strategy to carry an amino acid starter unit in the biosynthesis of macrolactam polyketide antibiotics. J. Am. Chem. Soc. 133, 18134–18137 (2011)

    Article  CAS  PubMed  Google Scholar 

  17. Ogasawara, Y., Kakinuma, K., Eguchi, T.: Involvement of glutamate mutase in the biosynthesis of the unique starter unit of the macrolactam polyketide antibiotic vicenistatin. J. Antibiot. 58, 468–472 (2005)

    Article  CAS  Google Scholar 

  18. Minami, A., Eguchi, T.: Substrate flexibility of vicenisaminyltransferase VinC involved in the biosynthesis of vicenistatin. J. Am. Chem. Soc. 129, 5102–5107 (2007)

    Article  CAS  PubMed  Google Scholar 

  19. Miyanaga, A., Cieślak, J., Shinohara, Y., Kudo, F., Eguchi, T.: The crystal structure of the adenylation enzyme VinN reveals a unique β-amino acid recognition mechanism. J. Biol. Chem. 289, 31448–31457 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miyanaga, A., Iwasawa, S., Shinohara, Y., Kudo, F., Eguchi, T.: Structure-based analysis of the molecular interactions between acyltransferase and acyl carrier protein in vicenistatin biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 113, 1802–1807 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miyanaga, A., Ouchi, R., Kudo, F., Eguchi, T.: Complex structure of the acyltransferase VinK and the carrier protein VinL with a pantetheine cross-linking probe. Acta Crystallogr. F Struct. Biol. Commun. 77, 294–302 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shinohara, Y., Miyanaga, A., Kudo, F., Eguchi, T.: The crystal structure of the amidohydrolase VinJ shows a unique hydrophobic tunnel for its interaction with polyketide substrates. FEBS Lett. 588, 995–1000 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. Hegde, V.R., Patel, M.G., Gullo, V.P., Ganguly, A.K., Sarre, O., Puar, M.S., McPhailet, A.T.: Macrolactams: a new class of antifungal agents. J. Am. Chem. Soc. 112, 6403–6405 (1990)

    Article  CAS  Google Scholar 

  24. Naruse, N., Tsuno, T., Sawada, Y., Konishi, M., Oki, T.: Fluvirucins A1, A2, B1, B2, B3, B4 and B5, new antibiotics active against influenza A virus II. structure determination. J. Antibiot. 44, 741–755 (1991)

    Google Scholar 

  25. Costa, M., Zúñiga, P., Peñalver, A.M., Thorsteinsdottir, M., Pérez, M., Cañedo, L.M., Cuevas, C.: New fluvirucinins C1 and C2 produced by a marine derived actinomycete. Nat. Prod. Commun. 12, 679–682 (2017)

    PubMed  Google Scholar 

  26. Leutou, A.S., Yang, I., Le, T.C., Hahn, D., Lim, K.M., Nam, S.J., Fenical, W.: Fluvirucin B6, a new macrolactam isolated from a marine-derived actinomycete of the genus Nocardiopsis. J. Antibiot. 71, 609–612 (2018)

    Article  CAS  Google Scholar 

  27. Yu, H., Chen, S., Li, H., Wang, R., Jiang, Y., Yan, L., Sun, P.: Fluvirucins B7–B10, new antifungal macrolactams from a marine-derived Nonomuraea sp. MYH522. RSC Adv. 12, 15479–15485 (2022)

    Google Scholar 

  28. Lin, T.Y., Borketey, L.S., Prasad, G., Waters, S.A., Schnarr, N.A.: Sequence, cloning, and analysis of the fluvirucin B1 polyketide synthase from Actinomadura vulgaris. ACS Synth. Biol. 2, 635–642 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Miyanaga, A., Hayakawa, Y., Numakura, M., Hashimoto, J., Teruya, K., Hirano, T., Shin-Ya, K., Kudo, F., Eguchi, T.: Identification of the fluvirucin B2 (Sch 38518) biosynthetic gene cluster from Actinomadura fulva subsp. indica ATCC 53714: substrate specificity of the β-amino acid selective adenylating enzyme FlvN. Biosci. Biotechnol. Biochem. 80, 935–941 (2016)

    Google Scholar 

  30. Barajas, J.F., Zargar, A., Pang, B., Benites, V.T., Gin, J., Baidoo, E.E.K., Petzold, C.J., Hillson, N.J., Keasling, J.D.: Biochemical characterization of β-amino acid incorporation in fluvirucin B2 biosynthesis. ChemBioChem 19, 1391–1395 (2018)

    Article  CAS  PubMed  Google Scholar 

  31. Futamura, Y., Sawa, R., Umezawa, Y., Igarashi, M., Nakamura, H., Hasegawa, K., Yamasaki, M., Tashiro, E., Takahashi, Y., Akamatsu, Y., Imoto, M.: Discovery of incednine as a potent modulator of the anti-apoptotic function of Bcl-xL from microbial origin. J. Am. Chem. Soc. 130, 1822–1823 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. Malmierca, M.G., González-Montes, L., Pérez-Victoria, I., Sialer, C., Braña, A.F., García Salcedo, R., Martín, J., Reyes, F., Méndez, C., Olano, C., Salas, J.A.: Searching for glycosylated natural products in actinomycetes and identification of novel macrolactams and angucyclines. Front. Microbiol. 9, 39 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lim, Y.H., Wong, F.T., Yeo, W.L., Ching, K.C., Lim, Y.W., Heng, E., Chen, S., Tsai, D.J., Lauderdale, T.L., Shia, K.S., Ho, Y.S., Hoon, S., Ang, E.L., Zhang, M.M., Zhao, H.: Auroramycin: a potent antibiotic from Streptomyces roseosporus by CRISPR-Cas9 activation. ChemBioChem 19, 1716–1719 (2018)

    Article  CAS  Google Scholar 

  34. Udwary, D.W., Zeigler, L., Asolkar, R.N., Singan, V., Lapidus, A., Fenical, W., Jensen, P.R., Moore, B.S.: Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc. Natl. Acad. Sci. U.S.A. 104, 10376–10381 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Skellam, E.J., Stewart, A.K., Strangman, W.K., Wright, J.L.: Identification of micromonolactam, a new polyene macrocyclic lactam from two marine Micromonospora strains using chemical and molecular methods: clarification of the biosynthetic pathway from a glutamate starter unit. J. Antibiot. 66, 431–441 (2013)

    Article  CAS  Google Scholar 

  36. Schulze, C.J., Donia, M.S., Siqueira-Neto, J.L., Ray, D., Raskatov, J.A., Green, R.E., McKerrow, J.H., Fischbach, M.A., Linington, R.G.: Genome-directed lead discovery: biosynthesis, structure elucidation, and biological evaluation of two families of polyene macrolactams against Trypanosoma brucei. ACS Chem. Biol. 10, 2373–2381 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schulz, D., Nachtigall, J., Geisen, U., Kalthoff, H., Imhoff, J.F., Fiedler, H.P., Süssmuth, R.D.: Silvalactam, a 24-membered macrolactam antibiotic produced by Streptomyces sp. Tü 6392. J. Antibiot. 65, 369–372 (2012)

    Google Scholar 

  38. Wang, J., Hu, X., Sun, G., Li, L., Jiang, B., Li, S., Bai, L., Liu, H., Yu, L., Wu, L.: Genome-guided discovery of pretilactam from Actinosynnema pretiosum ATCC 31565. Molecules 24, 2281 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hoshino, S., Okada, M., Awakawa, T., Asamizu, S., Onaka, H., Abe, I.: Mycolic acid containing bacterium stimulates tandem cyclization of polyene macrolactam in a lake sediment derived rare actinomycete. Org. Lett. 19, 4992–4995 (2017)

    Article  CAS  PubMed  Google Scholar 

  40. Takaishi, M., Kudo, F., Eguchi, T.: Identification of incednine biosynthetic gene cluster: characterization of novel β-glutamate-β-decarboxylase IdnL3. J. Antibiot. 66, 691–699 (2013)

    Article  CAS  Google Scholar 

  41. Malmierca, M.G., Pérez-Victoria, I., Martín, J., Reyes, F., Méndez, C., Olano, C., Salas, J.A.: Cooperative involvement of glycosyltransferases in the transfer of amino sugars during the biosynthesis of the macrolactam sipanmycin by Streptomyces sp. strain CS149. Appl. Environ. Microbiol. 84, e01462–18 (2018)

    Google Scholar 

  42. Cieślak, J., Miyanaga, A., Takaku, R., Takaishi, M., Amagai, K., Kudo, F., Eguchi, T.: Biochemical characterization and structural insight into aliphatic β-Amino acid adenylation enzymes IdnL1 and CmiS6. Proteins 85, 1238–1247 (2017)

    Article  PubMed  Google Scholar 

  43. Cieślak, J., Miyanaga, A., Takaishi, M., Kudo, F., Eguchi, T.: Functional and structural characterization of IdnL7, an adenylation enzyme involved in incednine biosynthesis. Acta Crystallogr. F Struct. Biol. Commun. 75, 299–306 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  44. Weissman, K.J.: Mutasynthesis—uniting chemistry and genetics for drug discovery. Trends Biotechnol. 25, 139–142 (2007)

    Article  CAS  PubMed  Google Scholar 

  45. Miyanaga, A., Takaku, R., Takaishi, M., Tashiro, E., Kudo, F., Eguchi, T.: Generation of incednine derivatives by mutasynthesis. J. Antibiot. 73, 794–797 (2020)

    Article  CAS  Google Scholar 

  46. Malmierca, M.G., Pérez-Victoria, I., Martín, J., Reyes, F., Méndez, C., Salas, J.A., Olano, C.: New sipanmycin analogues generated by combinatorial biosynthesis and mutasynthesis approaches relying on the substrate flexibility of key enzymes in the biosynthetic pathway. Appl. Environ. Microbiol. 86, e02453-e2519 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ōmura, S., Nakagawa, A., Shibata, K., Sano, H.: The structure of hitachimycin, a novel macrocyclic lactam involving β-phenylalanine. Tetrahedron Lett. 23, 4713–4716 (1982)

    Article  Google Scholar 

  48. Umezawa, I., Takeshima, H., Komiyama, K., Koh, Y., Yamamoto, H., Kawaguchi, M.A: New antitumor antibiotic, stubomycin. J. Antibiot. 34, 259–265 (1981)

    Google Scholar 

  49. Ottilie, S., Goldgof, G.M., Cheung, A.L., Walker, J.L., Vigil, E., Allen, K.E., Antonova-Koch, Y., Slayman, C.W., Suzuki, Y., Durrant, J.D.: Two inhibitors of yeast plasma membrane ATPase 1 (ScPma1p): toward the development of novel antifungal therapies. J. Cheminform. 10, 6 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hasegawa, T., Kamiya, T., Henmi, T., Iwasaki, H., Yamatodani, S.: Viridenomycin, a new antibiotic. J. Antibiot. 28, 167–175 (1975)

    Article  CAS  Google Scholar 

  51. Nakagawa, M., Toda, Y., Furihata, K., Hayakawa, Y., Seto, H.: Studies on viridenomycin, a novel 24-membered macrocyclic polyene lactam antibiotic. J. Antibiot. 45, 1133–1138 (1992)

    Article  CAS  Google Scholar 

  52. Kudo, F., Kawamura, K., Uchino, A., Miyanaga, A., Numakura, M., Takayanagi, R., Eguchi, T.: Genome mining of the hitachimycin biosynthetic gene cluster: involvement of a phenylalanine-2,3-aminomutase in biosynthesis. ChemBioChem 16, 909–914 (2015)

    Article  CAS  PubMed  Google Scholar 

  53. Miyanaga, A., Kurihara, S., Chisuga, T., Kudo, F., Eguchi, T.: Structural characterization of complex of adenylation domain and carrier protein by using pantetheine cross-linking probe. ACS Chem. Biol. 15, 1808–1812 (2020)

    Article  CAS  PubMed  Google Scholar 

  54. Kudo, F., Takahashi, S., Miyanaga, A., Nakazawa, Y., Nishino, K., Hayakawa, Y., Kawamura, K., Ishikawa, F., Tanabe, G., Iwai, N., Nagumo, Y., Usui, T., Eguchi, T.: Mutational biosynthesis of hitachimycin analogs controlled by the β-amino acid-selective adenylation enzyme HitB. ACS Chem. Biol. 16, 539–547 (2021)

    Article  CAS  PubMed  Google Scholar 

  55. Igarashi, M., Tsuchida, T., Kinoshita, N., Kamijima, M., Sawa, R., Sawa, T., Naganawa, H., Hamada, M., Takeuchi, T., Yamazaki, K., Ishizuka, M.: Cremimycin, a novel 19-membered macrocyclic lactam antibiotic, from Streptomyces sp. J Antibiot. 51, 123–129 (1998)

    Article  CAS  Google Scholar 

  56. Kojiri, K., Nakajima, S., Suzuki, H., Kondo, H., Suda, H.: A new macrocyclic lactam antibiotic, BE-14106. I. Taxonomy, isolation, biological activity and structural elucidation. J. Antibiot. 45, 868–874 (1992)

    Google Scholar 

  57. Mitchell, S.S., Nicholson, B., Teisan, S., Lam, K.S., Potts, B.C.: Aureoverticillactam, a novel 22-atom macrocyclic lactam from the marine actinomycete Streptomyces aureoverticillatus. J. Nat. Prod. 67, 1400–1402 (2004)

    Article  CAS  PubMed  Google Scholar 

  58. Raju, R., Piggott, A.M., Conte, M.M., Capon, R.J.: Heronamides A-C, new polyketide macrolactams from an Australian marine-derived Streptomyces sp. A biosynthetic case for synchronized tandem electrocyclization. Org. Biomol. Chem. 8, 4682–4689 (2010)

    Google Scholar 

  59. Sugiyama, R., Nishimura, S., Matsumori, N., Tsunematsu, Y., Hattori, A., Kakeya, H.: Structure and biological activity of 8-deoxyheronamide C from a marine-derived Streptomyces sp.: heronamides target saturated hydrocarbon chains in lipid membranes. J. Am. Chem. Soc. 136, 5209–5212 (2014)

    Google Scholar 

  60. Yu, P., Patel, A., Houk, K.N.: Transannular [6+4] and ambimodal cycloaddition in the biosynthesis of heronamide A. J. Am. Chem. Soc. 37, 13518–13523 (2015)

    Article  Google Scholar 

  61. Booth, T.J., Alt, S., Capon, R.J., Wilkinson, B.: Synchronous intramolecular cycloadditions of the polyene macrolactam polyketide heronamide C. Chem. Commun. 52, 6383–6386 (2016)

    Article  CAS  Google Scholar 

  62. Zhang, C., Wang, X., Chen, Y., He, Z., Yu, P., Liang, Y.: Dynamical trajectory study of the transannular [6+4] and ambimodal cycloaddition in the biosynthesis of heronamides. J. Org. Chem. 85, 9440–9445 (2020)

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, W., Li, S., Zhu, Y., Chen, Y., Chen, Y., Zhang, H., Zhang, G., Tian, X., Pan, Y., Zhang, S., Zhang, W., Zhang, C.: Heronamides d-f, polyketide macrolactams from the deep-sea-derived Streptomyces sp. SCSIO 03032. J. Nat. Prod. 77, 388–391 (2014)

    Google Scholar 

  64. Amagai, K., Takaku, R., Kudo, F., Eguchi, T.: A unique amino transfer mechanism for constructing the β-amino fatty acid starter unit in the biosynthesis of the macrolactam antibiotic cremimycin. ChemBioChem 14, 1998–2006 (2013)

    Article  CAS  PubMed  Google Scholar 

  65. Chisuga, T., Miyanaga, A., Kudo, F., Eguchi, T.: Structural analysis of the dual-function thioesterase SAV606 unravels the mechanism of Michael addition of glycine to an α, β-unsaturated thioester. J. Biol. Chem. 292, 10926–10937 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kawasaki, D., Chisuga, T., Miyanaga, A., Kudo, F., Eguchi, T.: Structural analysis of the glycine oxidase homologue CmiS2 reveals a unique substrate recognition mechanism for formation of a β-amino acid starter unit in cremimycin biosynthesis. Biochem 58, 2706–2709 (2019)

    Article  CAS  Google Scholar 

  67. Jørgensen, H., Degnes, K.F., Sletta, H., Fjaervik, E., Dikiy, A., Herfindal, L., Bruheim, P., Klinkenberg, G., Bredholt, H., Nygård, G., Døskeland, S.O., Ellingsen, T.E., Zotchev, S.B.: Biosynthesis of macrolactam BE-14106 involves two distinct PKS systems and amino acid processing enzymes for generation of the aminoacyl starter unit. Chem. Biol. 16, 1109–1121 (2009)

    Article  PubMed  Google Scholar 

  68. Jørgensen, H., Degnes, K.F., Dikiy, A., Fjaervik, E., Klinkenberg, G., Zotchev, S.B.: Insights into the evolution of macrolactam biosynthesis through cloning and comparative analysis of the biosynthetic gene cluster for a novel macrocyclic lactam, ML-449. Appl. Environ. Microbiol. 76, 283–293 (2010)

    Article  PubMed  Google Scholar 

  69. Zhu, Y., Zhang, W., Chen, Y., Yuan, C., Zhang, H., Zhang, G., Ma, L., Zhang, Q., Tian, X., Zhang, S., Zhang, C.: Characterization of heronamides biosynthesis reveals a tailoring hydroxylase and indicates migrated double bonds. ChemBioChem 16, 2086–2093 (2015)

    Article  CAS  PubMed  Google Scholar 

  70. Klaus, M., Grininger, M.: Engineering strategies for rational polyketide synthase design. Nat. Prod. Rep. 35, 1070–1081 (2018)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akimasa Miyanaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miyanaga, A. (2023). Biosynthesis of β-Amino Acid-Containing Macrolactam Polyketides. In: Ishikawa, H., Takayama, H. (eds) New Tide of Natural Product Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-99-1714-3_8

Download citation

Publish with us

Policies and ethics