Skip to main content

Dissecting Biosynthesis of Natural Products Toward Drug Discovery

  • Chapter
  • First Online:
New Tide of Natural Product Chemistry
  • 249 Accesses

Abstract

Microorganisms have developed diverse metabolic systems for enduring in a competitive society of nature. While some microbial species threaten human beings as the cause of infectious disease, there are many examples how people have utilized microbial potential to produce fermented foods, beverages, and pharmaceuticals, all of which are indispensable for maintaining the quality of human life. A significant factor that triggers biological phenotypes in the recipient is microbe-producing small organic molecules, also known as natural products. In the current post-genomic era, many of the specialized biosynthetic pathways of natural products have been identified and linked to their biosynthesis genes, enabling us to design, harness, and create the pathway to obtain more valuable substances. In this chapter, we initially introduce the biosynthesis of aspirochlorine, a potent antifungal agent produced by a beneficial fungus, Aspergillus oryzae, which has been utilized in East Asia for brewing fermented products. Then, we focus on potential drug candidates, fumagillin and pseurotins, produced by a human-pathogenic fungus Aspergillus fumigatus. As toxin and medicine are two sides of the same coin, deciphering and manipulating the biosynthetic pathways of bioactive natural products will facilitate the discovery of untapped therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schueffler, A., Anke, T.: Fungal natural products in research and development. Nat. Prod. Rep. 31, 1425–1448 (2014)

    Article  CAS  PubMed  Google Scholar 

  2. Houbraken, J., Frisvad, J.C., Samson, R.A.: Fleming’s penicillin producing strain is not Penicillium chrysogenum but P. rubens. IMA Fungus 2, 87–95 (2011)

    Google Scholar 

  3. Boruta, T., Bizukojc, M.: Production of lovastatin and itaconic acid by Aspergillus terreus: A comparative perspective. World J. Microbiol. Biotechnol. 33(2), 34 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yang, X., Feng, P., Yin, Y., Bushley, K., Spatafora, J.W., Wang, C.: Cyclosporine biosynthesis in Tolypocladium inflatum benefits fungal adaptation to the environment. mBio 9, e01211–01218 (2018)

    Google Scholar 

  5. Bills, G.F., Gloer, J.B.: Biologically active secondary metabolites from the fungi. Microbiol. Spectr. 4(6) (2016). Doi:https://doi.org/10.1128/microbiolspec.FUNK-0009-2016

  6. Tamang, J.P., Watanabe, K., Holzapfel, W.H.: Review: Diversity of microorganisms in global fermented foods and beverages. Front. Microbiol. 7, 377 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hayashi, K., Kajiwara, Y., Futagami, T., Goto, M., Takashita, H.: Making traditional Japanese distilled liquor, Shochu and Awamori, and the contribution of white and black Koji Fungi. J. Fungi (Basel) 7, 517 (2021)

    Google Scholar 

  8. Kusumoto, K.I., Yamagata, Y., Tazawa, R., Kitagawa, M., Kato, T., Isobe, K., Kashiwagi, Y.: Japanese traditional miso and koji making. J. Fungi (Basel) 7, 579 (2021)

    Google Scholar 

  9. Kitamoto, K.: Cell biology of the koji mold Aspergillus oryzae. Biosci. Biotechnol. Biochem. 79, 863–869 (2015)

    Article  CAS  PubMed  Google Scholar 

  10. Jin, F.J., Maruyama, J., Juvvadi, P.R., Arioka, M., Kitamoto, K.: Development of a novel quadruple auxotrophic host transformation system by argB gene disruption using adeA gene and exploiting adenine auxotrophy in Aspergillus oryzae. FEMS Microbiol. Lett. 239, 79–85 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. Oikawa, H.: Reconstitution of biosynthetic machinery of fungal natural products in heterologous hosts. Biosci. Biotechnol. Biochem. 84, 433–444 (2020)

    Article  CAS  PubMed  Google Scholar 

  12. Roux, I., Chooi, Y.H.: Heterologous expression of fungal biosynthetic pathways in Aspergillus nidulans using episomal vectors. In: Skellam, E. (ed.) Engineering Natural Product Biosynthesis: Methods and Protocols, pp. 75–92. Springer, US, New York (2022)

    Chapter  Google Scholar 

  13. Yee, D.A., Tang, Y.: Investigating fungal biosynthetic pathways using heterologous gene expression: Aspergillus nidulans as a heterologous host. In: Skellam, E. (ed.) Engineering Natural Product Biosynthesis: Methods and Protocols, pp. 41–52. Springer, US, New York (2022)

    Chapter  Google Scholar 

  14. Machida, M., Asai, K., Sano, M., Tanaka, T., Kumagai, T., Terai, G., Kusumoto, K., Arima, T., Akita, O., Kashiwagi, Y., et al.: Genome sequencing and analysis of Aspergillus oryzae. Nature 438, 1157–1161 (2005)

    Article  PubMed  Google Scholar 

  15. Rank, C., Klejnstrup, M.L., Petersen, L.M., Kildgaard, S., Frisvad, J.C., Held Gotfredsen, C., Ostenfeld Larsen, T.: Comparative chemistry of Aspergillus oryzae (RIB40) and A. flavus (NRRL 3357). Metabolites 2, 39–56 (2012)

    Google Scholar 

  16. Sakata, K., Masago, H., Sakurai, A., Takahashi, N.: Isolation of aspirochlorine (=antibiotic a30641) possessing a novel Dithiodiketopiperazine structure from Aspergillus flavus. Tetrahedron Lett. 23, 2095–2098 (1982)

    Article  CAS  Google Scholar 

  17. Sakata, K., Maruyama, M., Uzawa, J., Sakurai, A., Lu, H.S.M., Clardy, J.: Structural revision of aspirochlorine (=antibiotic A30641), a novel Epidithiopiperazine-2,5-dione produced by Aspergillus spp. Tetrahedron Lett. 28, 5607–5610 (1987)

    Article  CAS  Google Scholar 

  18. Berg, D.H., Massing, R.P., Hoehn, M.M., Boeck, L.D., Hamill, R.L.: A30641, a new Epidithiodiketopiperazine with antifungal activity. J. Antibiot. (Tokyo) 29, 394–397 (1976)

    Article  CAS  PubMed  Google Scholar 

  19. Klausmeyer, P., McCloud, T.G., Tucker, K.D., Cardellina, J.H., Shoemaker, R.H.: Aspirochlorine class compounds from Aspergillus flavus inhibit azole-resistant Candida albicans. J. Nat. Prod. 68, 1300–1302 (2005)

    Article  CAS  PubMed  Google Scholar 

  20. Kato, A., Saeki, T., Suzuki, S., Ando, K., Tamura, G.: Oryzachlorin, a new antifungal antibiotic. J. Antibiot. (Tokyo) 22, 322–326 (1969)

    Article  CAS  PubMed  Google Scholar 

  21. Chankhamjon, P., Boettger-Schmidt, D., Scherlach, K., Urbansky, B., Lackner, G., Kalb, D., Dahse, H.M., Hoffmeister, D., Hertweck, C.: Biosynthesis of the halogenated mycotoxin aspirochlorine in koji mold involves a cryptic amino acid conversion. Angew. Chem. Int. Ed. 53, 13409–13413 (2014)

    Article  CAS  Google Scholar 

  22. Pooja, S., Angkita, S., Shoma Paul, N.: Identification of potent inhibitors of COVID-19 main protease enzyme by molecular docking study. ChemRxiv (2020). https://doi.org/10.26434/chemrxiv.12179202.v1

    Article  Google Scholar 

  23. Monti, F., Ripamonti, F., Hawser, S.P., Islam, K.: Aspirochlorine: a highly selective and potent inhibitor of fungal protein synthesis. J. Antibiot. (Tokyo) 52, 311–318 (1999)

    Article  CAS  PubMed  Google Scholar 

  24. Gardiner, D.M., Waring, P., Howlett, B.J.: The epipolythiodioxopiperazine (ETP) class of fungal toxins: Distribution, mode of action, functions and biosynthesis. Microbiol. 151, 1021–1032 (2005)

    Article  CAS  PubMed  Google Scholar 

  25. Balibar, C.J., Walsh, C.T.: Glip, a multimodular nonribosomal peptide synthetase in Aspergillus fumigatus, makes the diketopiperazine scaffold of gliotoxin. Biochem. 45, 15029–15038 (2006)

    Article  CAS  PubMed  Google Scholar 

  26. Toyotome, T.: Contribution of gliotoxin to aspergillosis. Mycotoxins 65, 109–113 (2015)

    CAS  Google Scholar 

  27. Huber, E.M.: Epipolythiodioxopiperazine-based natural products: building blocks, biosynthesis and biological activities. ChemBioChem 23, e202200341 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Scharf, D.H., Remme, N., Habel, A., Chankhamjon, P., Scherlach, K., Heinekamp, T., Hortschansky, P., Brakhage, A.A., Hertweck, C.A.: (2011) Dedicated glutathione S-transferase mediates carbon-sulfur bond formation in gliotoxin biosynthesis. J. Am. Chem. Soc. 133, 12322–12325 (2011)

    Article  CAS  PubMed  Google Scholar 

  29. Marion, A., Groll, M., Scharf, D.H., Scherlach, K., Glaser, M., Sievers, H., Schuster, M., Hertweck, C., Brakhage, A.A., Antes, I., et al.: Gliotoxin biosynthesis: structure, mechanism, and metal promiscuity of carboxypeptidase Glij. ACS Chem. Biol. 12, 1874–1882 (2017)

    Article  CAS  PubMed  Google Scholar 

  30. Scharf, D.H., Chankhamjon, P., Scherlach, K., Heinekamp, T., Willing, K., Brakhage, A.A., Hertweck, C.: Epidithiodiketopiperazine biosynthesis: a four-enzyme cascade converts glutathione conjugates into transannular disulfide bridges. Angew. Chem. Int. Ed. 52, 11092–11095 (2013)

    Article  CAS  Google Scholar 

  31. Scharf, D.H., Chankhamjon, P., Scherlach, K., Heinekamp, T., Roth, M., Brakhage, A.A., Hertweck, C.: Epidithiol formation by an unprecedented twin carbon-sulfur lyase in the gliotoxin pathway. Angew. Chem. Int. Ed. 51, 10064–10068 (2012)

    Article  CAS  Google Scholar 

  32. Scharf, D.H., Remme, N., Heinekamp, T., Hortschansky, P., Brakhage, A.A., Hertweck, C.: Transannular disulfide formation in gliotoxin biosynthesis and its role in self-resistance of the human pathogen Aspergillus fumigatus. J. Am. Chem. Soc. 132, 10136–10141 (2010)

    Article  CAS  PubMed  Google Scholar 

  33. Scharf, D.H., Groll, M., Habel, A., Heinekamp, T., Hertweck, C., Brakhage, A.A., Huber, E.M.: Flavoenzyme-catalyzed formation of disulfide bonds in natural products. Angew. Chem. Int. Ed. 53, 2221–2224 (2014)

    Article  CAS  Google Scholar 

  34. Tsunematsu, Y.: Genomics-directed activation of cryptic natural product pathways deciphers codes for biosynthesis and molecular function. J. Nat. Med. 75, 261–274 (2021)

    Article  PubMed  Google Scholar 

  35. Tsunematsu, Y., Ichinoseki, S., Nakazawa, T., Ishikawa, N., Noguchi, H., Hotta, K., Watanabe, K.: Overexpressing transcriptional regulator in Chaetomium globosum activates a silent biosynthetic pathway: evaluation of shanorellin biosynthesis. J. Antibiot. (Tokyo) 65, 377–380 (2012)

    Article  CAS  PubMed  Google Scholar 

  36. Yamamoto, T., Tsunematsu, Y., Noguchi, H., Hotta, K., Watanabe, K.: Elucidation of pyranonigrin biosynthetic pathway reveals a mode of tetramic acid, fused gamma-pyrone, and exo-methylene formation. Org. Lett. 17, 4992–4995 (2015)

    Article  CAS  PubMed  Google Scholar 

  37. Tsunematsu, Y., Maeda, N., Yokoyama, M., Chankhamjon, P., Watanabe, K., Scherlach, K., Hertweck, C.: Enzymatic amide tailoring promotes retro-aldol amino acid conversion to form the antifungal agent aspirochlorine. Angew. Chem. Int. Ed. 57, 14051–14054 (2018)

    Article  CAS  Google Scholar 

  38. Sato, T., Chida, N.: Nucleophilic addition to N-alkoxyamides. Org. Biomol. Chem. 12, 3147–3150 (2014)

    Article  CAS  PubMed  Google Scholar 

  39. Tsunematsu, Y., Maeda, N., Sato, M., Hara, K., Hashimoto, H., Watanabe, K., Hertweck, C.: Specialized flavoprotein promotes sulfur migration and spiroaminal formation in Aspirochlorine Biosynthesis. J. Am. Chem. Soc. 143, 206–213 (2021)

    Article  CAS  PubMed  Google Scholar 

  40. Hammerstad, M., Hersleth, H.P.: Overview of structurally homologous flavoprotein oxidoreductases containing the low M(r) thioredoxin reductase-like fold—a functionally diverse group. Arch. Biochem. Biophys. 702, 108826 (2021)

    Article  CAS  PubMed  Google Scholar 

  41. Sato, M., Nakazawa, T., Tsunematsu, Y., Hotta, K., Watanabe, K.: Echinomycin biosynthesis. Curr. Opin. Chem. Biol. 17, 537–545 (2013)

    Article  CAS  PubMed  Google Scholar 

  42. Marin, S., Ramos, A.J., Cano-Sancho, G., Sanchis, V.: Mycotoxins: occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 60, 218–237 (2013)

    Article  CAS  PubMed  Google Scholar 

  43. Eble, T.E., Hanson, F.R.: Fumagillin, an antibiotic from Aspergillus funigatus H-3. Antibiot. Chemother. (Northfield) 1, 54–58 (1951)

    CAS  PubMed  Google Scholar 

  44. Guruceaga, X., Perez-Cuesta, U., Abad-Diaz de Cerio, A., Gonzalez, O., Alonso, R.M., Hernando, F.L., Ramirez-Garcia, A., Rementeria, A.: Fumagillin, a mycotoxin of Aspergillus fumigatus: biosynthesis, biological activities, detection, and applications. Toxins (Basel) 12, 7 (2019)

    Google Scholar 

  45. Lijnen, H.R., Frederix, L., Van Hoef, B.: Fumagillin reduces adipose tissue formation in murine models of nutritionally induced obesity. Obesity (Silver Spring) 18, 2241–2246 (2010)

    Article  CAS  PubMed  Google Scholar 

  46. Chen, X., Xie, S., Bhat, S., Kumar, N., Shapiro, T.A., Liu, J.O.: Fumagillin and fumarranol interact with P. falciparum methionine aminopeptidase 2 and inhibit malaria parasite growth in vitro and in vivo. Chem. Biol. 16, 193–202 (2009)

    Google Scholar 

  47. Padia, J., Kulakova, L., Galkin, A., Herzberg, O.: Discovery and preclinical development of antigiardiasis fumagillol derivatives. Antimicrob. Agents Chemother. 64, e00582-e620 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kornienko, A., Evidente, A., Vurro, M., Mathieu, V., Cimmino, A., Evidente, M., van Otterlo, W.A., Dasari, R., Lefranc, F., Kiss, R.: Toward a cancer drug of fungal origin. Med. Res. Rev. 35, 937–967 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bhargava, P., Marshall, J.L., Rizvi, N., Dahut, W., Yoe, J., Figuera, M., Phipps, K., Ong, V.S., Kato, A., Hawkins, M.J.: A phase I and pharmacokinetic study of TNP-470 administered weekly to patients with advanced cancer. Clin. Cancer Res. 5, 1989–1995 (1999)

    CAS  PubMed  Google Scholar 

  50. Arico-Muendel, C.C., Benjamin, D.R., Caiazzo, T.M., Centrella, P.A., Contonio, B.D., Cook, C.M., Doyle, E.G., Hannig, G., Labenski, M.T., Searle, L.L., et al.: Carbamate analogues of fumagillin as potent, targeted inhibitors of methionine aminopeptidase-2. J. Med. Chem. 52, 8047–8056 (2009)

    Article  CAS  PubMed  Google Scholar 

  51. Shin, S.J., Jeung, H.C., Ahn, J.B., Rha, S.Y., Roh, J.K., Park, K.S., Kim, D.H., Kim, C., Chung, H.C.A: Phase I pharmacokinetic and pharmacodynamic study of CKD-732, an antiangiogenic agent, in patients with refractory solid cancer. Invest. New Drugs 28, 650–658 (2010)

    Google Scholar 

  52. McCandless, S.E., Yanovski, J.A., Miller, J., Fu, C., Bird, L.M., Salehi, P., Chan, C.L., Stafford, D., Abuzzahab, M.J., Viskochil, D., et al.: Effects of MetAP2 inhibition on hyperphagia and body weight in prader-willi syndrome: a randomized, double-blind, placebo-controlled trial. Diabetes Obes. Metab. 19, 1751–1761 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wentworth, J.M., Colman, P.G., Zafgen Study, G.: The methionine aminopeptidase 2 inhibitor ZGN-1061 improves glucose control and weight in overweight and obese individuals with type 2 diabetes: a randomized, placebo-controlled trial. Diabetes Obes. Metab. 22, 1215–1219 (2020)

    Article  Google Scholar 

  54. Maillard, A., Scemla, A., Laffy, B., Mahloul, N., Molina, J.M.: Safety and efficacy of fumagillin for the treatment of intestinal microsporidiosis. A French prospective cohort study. J. Antimicrob. Chemother. 76, 487–494 (2021)

    Google Scholar 

  55. van den Heever, J.P., Thompson, T.S., Curtis, J.M., Pernal, S.F.: Stability of dicyclohexylamine and fumagillin in honey. Food Chem. 179, 152–158 (2015)

    Google Scholar 

  56. Higes, M., Nozal, M.J., Alvaro, A., Barrios, L., Meana, A., Martin-Hernandez, R., Bernal, J.L., Bernal, J.: The stability and effectiveness of fumagillin in controlling Nosema ceranae (microsporidia) infection in honey bees (Apis mellifera) under laboratory and field conditions. Apidologie 42, 364–377 (2011)

    Article  CAS  Google Scholar 

  57. Sin, N., Meng, L., Wang, M.Q., Wen, J.J., Bornmann, W.G., Crews, C.M.: The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2. Proc. Natl. Acad. Sci. U.S.A. 94, 6099–6103 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Griffith, E.C., Su, Z., Turk, B.E., Chen, S., Chang, Y.H., Wu, Z., Biemann, K., Liu, J.O.: Methionine aminopeptidase (type 2) is the common target for angiogenesis inhibitors AGM-1470 and ovalicin. Chem Biol. 4, 461–471 (1997)

    Article  CAS  PubMed  Google Scholar 

  59. Liu, S., Widom, J., Kemp, C.W., Crews, C.M., Clardy, J.: Structure of human methionine aminopeptidase-2 complexed with fumagillin. Science 282, 1324–1327 (1998)

    Article  CAS  PubMed  Google Scholar 

  60. Lin, H.C., Chooi, Y.H., Dhingra, S., Xu, W., Calvo, A.M., Tang, Y.: The fumagillin biosynthetic gene cluster in Aspergillus fumigatus encodes a cryptic terpene cyclase involved in the formation of β-trans-Bergamotene. J. Am. Chem. Soc. 135, 4616–4619 (2013)

    Google Scholar 

  61. Lin, H.C., Tsunematsu, Y., Dhingra, S., Xu, W., Fukutomi, M., Chooi, Y.H., Cane, D.E., Calvo, A.M., Watanabe, K., Tang, Y.: Generation of complexity in fungal terpene biosynthesis: discovery of a multifunctional cytochrome P450 in the fumagillin pathway. J. Am. Chem. Soc. 136, 4426–4436 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mori, T., Zhai, R., Ushimaru, R., Matsuda, Y., Abe, I.: Molecular insights into the endoperoxide formation by Fe(II)/α-kg-dependent oxygenase NvfI. Nat. Commun. 12, 4417 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Maiya, S., Grundmann, A., Li, X., Li, S.M., Turner, G.: Identification of a hybrid PKS/NRPS required for pseurotin a biosynthesis in the human pathogen Aspergillus fumigatus. ChemBioChem 8, 1736–1743 (2007)

    Article  CAS  PubMed  Google Scholar 

  64. Wiemann, P., Guo, C.J., Palmer, J.M., Sekonyela, R., Wang, C.C., Keller, N.P.: Prototype of an intertwined secondary-metabolite supercluster. Proc. Natl. Acad. Sci. U.S.A. 110, 17065–17070 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mohr, P., Tamm, C.: Biosynthesis of pseurotin-A. Tetrahedron 37, 201–212 (1981)

    Article  Google Scholar 

  66. Tsunematsu, Y., Fukutomi, M., Saruwatari, T., Noguchi, H., Hotta, K., Tang, Y., Watanabe, K.: Elucidation of pseurotin biosynthetic pathway points to trans-acting C-methyltransferase: generation of chemical diversity. Angew. Chem. Int. Ed. 53, 8475–8479 (2014)

    Article  CAS  Google Scholar 

  67. Zou, Y., Xu, W., Tsunematsu, Y., Tang, M., Watanabe, K., Tang, Y.: Methylation-dependent Acyl transfer between polyketide synthase and nonribosomal peptide synthetase modules in fungal natural product biosynthesis. Org. Lett. 16, 6390–6393 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kishimoto, S., Tsunematsu, Y., Matsushita, T., Hara, K., Hashimoto, H., Tang, Y., Watanabe, K.: Functional and structural analyses of trans C-methyltransferase in fungal polyketide biosynthesis. Biochem. 58, 3933–3937 (2019)

    Article  CAS  Google Scholar 

  69. Asami, Y., Kakeya, H., Onose, R., Yoshida, A., Matsuzaki, H., Osada, H.: Azaspirene: a novel angiogenesis inhibitor containing a 1-Oxa-7-azaspiro[4.4]non-2-ene-4,6-dione skeleton produced by the fungus Neosartorya sp. Org. Lett. 4, 2845–2848 (2002)

    Google Scholar 

  70. Yamamoto, T., Tsunematsu, Y., Hara, K., Suzuki, T., Kishimoto, S., Kawagishi, H., Noguchi, H., Hashimoto, H., Tang, Y., Hotta, K., Watanabe, K.: Oxidative trans to cis isomerization of olefins in polyketide biosynthesis. Angew. Chem. Int. Ed. 55, 6207–6210 (2016)

    Article  CAS  Google Scholar 

  71. Ando, O., Satake, H., Nakajima, M., Sato, A., Nakamura, T., Kinoshita, T., Furuya, K., Haneishi, T.: Synerazol, a new antifungal antibiotic. J. Antibiot. (Tokyo) 44, 382–389 (1991)

    Article  CAS  PubMed  Google Scholar 

  72. Igarashi, Y., Yabuta, Y., Sekine, A., Fujii, K., Harada, K., Oikawa, T., Sato, M., Furumai, T., Oki, T.: Directed biosynthesis of fluorinated pseurotin a, synerazol and gliotoxin. J. Antibiot. (Tokyo) 57, 748–754 (2004)

    Article  CAS  PubMed  Google Scholar 

  73. Ishikawa, M., Ninomiya, T., Akabane, H., Kushida, N., Tsujiuchi, G., Ohyama, M., Gomi, S., Shito, K., Murata, T.: Pseurotin A and its analogues as inhibitors of immunoglobulin e production. Bioorg Med. Chem. Lett. 19, 1457–1460 (2009)

    Article  CAS  PubMed  Google Scholar 

  74. Asami, Y., Kakeya, H., Komi, Y., Kojima, S., Nishikawa, K., Beebe, K., Neckers, L., Osada, H.: Azaspirene, a fungal product, inhibits angiogenesis by blocking Raf-1 activation. Cancer Sci. 99, 1853–1858 (2008)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am deeply grateful to Professor Kenji Watanabe of the University of Shizuoka for his invaluable support in facilitating the research endeavors in his laboratory. I would also like to express my appreciation to Professor Christian Hertweck of the Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI) for their guidance and insightful suggestions. Dr. Tsuyoshi Yamamoto, Ms. Manami Fukutomi, and Mr. Naoya Maeda of Watanabe's laboratory alumni significantly contributed to the above research and were greatly acknowledged for their efforts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuta Tsunematsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsunematsu, Y. (2023). Dissecting Biosynthesis of Natural Products Toward Drug Discovery. In: Ishikawa, H., Takayama, H. (eds) New Tide of Natural Product Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-99-1714-3_6

Download citation

Publish with us

Policies and ethics