Skip to main content

Capsulotomy and Lens Fragmentation

  • Chapter
  • First Online:
Current Advances in Ocular Surgery

Part of the book series: Current Practices in Ophthalmology ((CUPROP))

  • 232 Accesses

Abstract

Two of the most important steps in successful cataract surgery are capsulotomy and nuclear disassembly. As cataract surgery continues to progress in safety and efficacy, new devices and techniques to create a perfectly sized and centered capsulotomy emerge. Femtosecond laser assisted capsulotomy allows surgeons to automate anterior capsulotomy and eliminate any variability associated with a manual capsulotomy. Precision pulse capsulotomy provides a similar advantage without introducing any additional complications. Similarly, nuclear disassembly techniques and adjunct technology has been developed with the goal of reducing zonular stress and phacoemulsification energy. Femtosecond laser lens fragmentation may help avoid endothelial cell damage and zonular dehiscence, but comes with both a financial and time burden. A micro-interventional lens fragmentation device may also help with reducing the energy required to remove dense lens nuclei without being economically burdensome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wyględowska-Promieńska D, Jaworski M, Kozieł K, Packard R. The evolution of the anterior capsulotomy. Wideochir Inne Tech Maloinwazyjne. 2019;14(1):12–8. https://doi.org/10.5114/wiitm.2019.81313.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gimbel HV, Neuhann T. Development, advantages, and methods of the continuous circular capsulorhexis technique. J Cataract Refract Surg. 1990;16:31–7.

    Article  CAS  PubMed  Google Scholar 

  3. Carifi G, Miller MH, Pitsas C, Zygoura V, Deshmukh RR, Kopsachilis N, et al. Complications and outcomes of phacoemulsification cataract surgery complicated by anterior capsule tear. Am J Ophthalmol. 2015;159:463–9.

    Article  PubMed  Google Scholar 

  4. Lin H, Tan X, Lin Z, et al. Capsular outcomes differ with capsulorhexis sizes after pediatric cataract surgery: a randomized controlled trial. Sci Rep. 2015;5:16227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hollick EJ, Spalton DJ, Meacock WR. The effect of capsulorhexis size on posterior capsular opacification: one-year results of a randomized prospective trial. Am J Ophthalmol. 1999;128:271–9.

    Article  CAS  PubMed  Google Scholar 

  6. Sanders DR, Higginbotham RW, Opatowsky IE, Confino J. Hyperopic shift in refraction associated with implantation of the single-piece Collamer intraocular lens. J Cataract Refract Surg. 2006;32(12):2110–2.

    Article  PubMed  Google Scholar 

  7. Okada M, Hersh D, Paul E, van der Straaten D. Effect of centration and circularity of manual capsulorrhexis on cataract surgery refractive outcomes. Ophthalmology. 2014;121:763–70.

    Article  PubMed  Google Scholar 

  8. Dooley IJ, O’Brien PD. Subjective difficulty of each stage of phacoemulsification cataract surgery performed by basic surgical trainees. J Cataract Refract Surg. 2006;32:604–8.

    Article  PubMed  Google Scholar 

  9. Friedman NJ, Palanker DV, Schuele G, et al. Femtosecond laser capsulotomy [published correction appears in J Cataract Refract Surg. 2011 Sep;37(9):1742]. J Cataract Refract Surg. 2011;37(7):1189–98. https://doi.org/10.1016/j.jcrs.2011.04.022.

    Article  PubMed  Google Scholar 

  10. Qian DW, Guo HK, Jin SL, Zhang HY, Li YC. Femtosecond laser capsulotomy versus manual capsulotomy: a meta-analysis. Int J Ophthalmol. 2016;9(3):453–8. Published 2016 Mar 18. https://doi.org/10.18240/ijo.2016.03.23.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ali MH, Ullah S, Javaid U, et al. Comparison of characteristics of femtosecond laser-assisted anterior capsulotomy versus manual continuous curvilinear capsulorrhexis: a meta-analysis of 5-year results. J Pak Med Assoc. 2017;67:1574–9.

    PubMed  Google Scholar 

  12. Rostami B, Tian J, Jackson N, et al. High rate of early posterior capsule opacification following femtosecond laser-assisted cataract surgery. Case Rep Ophthalmol. 2016;7:213–7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Abell RG, Davies PEJ, Phelan D, Goemann K, McPherson ZE, Vote BJ. Anterior capsulotomy integrity after femtosecond laser-assisted cataract surgery. Ophthalmology. 2014;121:17–24.

    Article  PubMed  Google Scholar 

  14. Chang DF. Zepto precision pulse capsulotomy: a new automated and disposable capsulotomy technology. Indian J Ophthalmol. 2017;65(12):1411–4. https://doi.org/10.4103/ijo.IJO_737_17.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hu W, Chen S. Advances in capsulorhexis. Curr Opin Ophthalmol. 2019;30(1):19–24. https://doi.org/10.1097/ICU.0000000000000539.

    Article  PubMed  Google Scholar 

  16. Titiyal JS, Kaur M, Singh A, et al. Comparative evaluation of femtosecond laser-assisted cataract surgery and conventional phacoemulsification in white cataract. Clin Ophthalmol. 2016;10:1357–64.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Conrad-Hengerer I, Hengerer FH, Joachim SC, et al. Femtosecond laser-assisted cataract surgery in intumescent white cataracts. J Cataract Refract Surg. 2014;40:44–50.

    Article  PubMed  Google Scholar 

  18. Yaguchi S, Bissen-Miyajima H, Ota Y, Oki S, Minami K. Efficacy of femtosecond laser-assisted capsulotomy: experimental evaluation using the zonular dehiscence model. Transl Vis Sci Technol. 2020;9(13):7. https://doi.org/10.1167/tvst.9.13.7.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chee SP, Wong MH, Jap A. Management of severely subluxated cataracts using femtosecond laser-assisted cataract surgery. Am J Ophthalmol. 2017 Jan;173:7–15.

    Article  PubMed  Google Scholar 

  20. Waltz K, Thompson VM, Quesada G. Precision pulse capsulotomy: initial clinical experience in simple and challenging cataract surgery cases. J Cataract Refract Surg. 2017;43(5):606–14. https://doi.org/10.1016/j.jcrs.2017.01.023.

    Article  PubMed  Google Scholar 

  21. Gundersen KG, Potvin R. Clinical results after precision pulse capsulotomy. Clin Ophthalmol. 2020;14:4533–40. Published 2020 Dec 29. https://doi.org/10.2147/OPTH.S293819.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Thompson VM, Berdahl JP, Solano JM, Chang DF. Comparison of manual, femtosecond laser, and precision pulse capsulotomy edge tear strength in paired human cadaver eyes. Ophthalmology. 2016;123(2):265–74. https://doi.org/10.1016/j.ophtha.2015.10.019.

    Article  PubMed  Google Scholar 

  23. Chang DF, Mamalis N, Werner L. Precision pulse capsulotomy: preclinical safety and performance of a new capsulotomy technology. Ophthalmology. 2016;123(2):255–64. https://doi.org/10.1016/j.ophtha.2015.10.008.

    Article  PubMed  Google Scholar 

  24. Chougule P, Warkad V, Badakere A, Kekunnaya R. Precision pulse capsulotomy: an automated alternative to manual capsulorhexis in paediatric cataract. BMJ Open Ophthalmol. 2019;4(1):e000255. Published 2019 May 31. https://doi.org/10.1136/bmjophth-2018-000255.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Devgan U. Surgical techniques in phacoemulsification. Curr Opin Ophthalmol. 2007;18(1):19–22. https://doi.org/10.1097/ICU.0b013e328011f9e1.

    Article  PubMed  Google Scholar 

  26. Bourne RR, Minassian DC, Dart JK, Rosen P, Kaushal S, Wingate N. Effect of cataract surgery on the corneal endothelium: modern phacoemulsification compared with extracapsular cataract surgery. Ophthalmology. 2004;111(4):679–85. https://doi.org/10.1016/j.ophtha.2003.07.015.

    Article  PubMed  Google Scholar 

  27. Mahdy MA, Eid MZ, Mohammed MA, Hafez A, Bhatia J. Relationship between endothelial cell loss and microcoaxial phacoemulsification parameters in noncomplicated cataract surgery. Clin Ophthalmol. 2012;6:503–10. https://doi.org/10.2147/OPTH.S29865. Epub 2012 Mar 29.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Singh R, Vasavada AR, Janaswamy G. Phacoemulsification of brunescent and black cataracts. J Cataract Refract Surg. 2001;27(11):1762–9. https://doi.org/10.1016/s0886-3350(01)00839-2.

    Article  CAS  PubMed  Google Scholar 

  29. Park J, Yum HR, Kim MS, Harrison AR, Kim EC. Comparison of phaco-chop, divide-and-conquer, and stop-and-chop phaco techniques in microincision coaxial cataract surgery. J Cataract Refract Surg. 2013;39(10):1463–9. https://doi.org/10.1016/j.jcrs.2013.04.033. Epub 2013 Jul 31.

    Article  PubMed  Google Scholar 

  30. Zeng M, Liu X, Liu Y, Xia Y, Luo L, Yuan Z, Zeng Y, Liu Y. Torsional ultrasound modality for hard nucleus phacoemulsification cataract extraction. Br J Ophthalmol. 2008;92(8):1092–6. https://doi.org/10.1136/bjo.2007.128504. Epub 2008 Jun 20.

    Article  CAS  PubMed  Google Scholar 

  31. Hoffman RS, Fine IH, Packer M. New phacoemulsification technology. Curr Opin Ophthalmol. 2005;16(1):38–43. https://doi.org/10.1097/00055735-200502000-00007.

    Article  PubMed  Google Scholar 

  32. Wong T, Hingorani M, Lee V. Phacoemulsification time and power requirements in phaco chop and divide and conquer nucleofractis techniques. J Cataract Refract Surg. 2000;26(9):1374–8. https://doi.org/10.1016/s0886-3350(00)00538-1.

    Article  CAS  PubMed  Google Scholar 

  33. Pirazzoli G, D'Eliseo D, Ziosi M, Acciarri R. Effects of phacoemulsification time on the corneal endothelium using phacofracture and phaco chop techniques. J Cataract Refract Surg. 1996;22(7):967–9. https://doi.org/10.1016/s0886-3350(96)80200-8.

    Article  CAS  PubMed  Google Scholar 

  34. Ali MH, Javaid M, Jamal S, Butt NH. Femtosecond laser assisted cataract surgery, beginning of a new era in cataract surgery. Oman J Ophthalmol. 2015;8(3):141–6. https://doi.org/10.4103/0974-620X.169892.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Palanker DV, Blumenkranz MS, Andersen D, Wiltberger M, Marcellino G, Gooding P, Angeley D, Schuele G, Woodley B, Simoneau M, Friedman NJ, Seibel B, Batlle J, Feliz R, Talamo J, Culbertson W. Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography. Sci Transl Med. 2010;2(58):58ra85. https://doi.org/10.1126/scitranslmed.3001305.

    Article  PubMed  Google Scholar 

  36. Nagy Z, Takacs A, Filkorn T, Sarayba M. Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery. J Refract Surg. 2009;25(12):1053–60. https://doi.org/10.3928/1081597X-20091117-04.

    Article  PubMed  Google Scholar 

  37. Wu BM, Williams GP, Tan A, Mehta JS. A comparison of different operating systems for femtosecond lasers in cataract surgery. J Ophthalmol. 2015;2015:616478. https://doi.org/10.1155/2015/616478. Epub 2015 Sep 21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Conrad-Hengerer I, Hengerer FH, Schultz T, Dick HB. Effect of femtosecond laser fragmentation of the nucleus with different softening grid sizes on effective phaco time in cataract surgery. J Cataract Refract Surg. 2012;38(11):1888–94. https://doi.org/10.1016/j.jcrs.2012.07.023. Epub 2012 Sep 12.

    Article  PubMed  Google Scholar 

  39. Asena BS, Kaskaloglu M. Comparison of hybrid and cross fragmentation patterns in terms of phaco time and corneal effects. Lasers Surg Med. 2018;50(4):319–23. https://doi.org/10.1002/lsm.22764. Epub 2017 Nov 24.

    Article  PubMed  Google Scholar 

  40. Lyu D, Shen Z, Zhang L, Qin Z, Ni S, Wang W, Zhu Y, Yao K. Comparison of perioperative parameters in femtosecond laser-assisted cataract surgery using 3 nuclear fragmentation patterns. Am J Ophthalmol. 2020;213:283–92. https://doi.org/10.1016/j.ajo.2019.12.017. Epub 2019 Dec 27.

    Article  PubMed  Google Scholar 

  41. Kolb CM, Shajari M, Mathys L, Herrmann E, Petermann K, Mayer WJ, Priglinger S, Kohnen T. Comparison of femtosecond laser-assisted cataract surgery and conventional cataract surgery: a meta-analysis and systematic review. J Cataract Refract Surg. 2020;46(8):1075–85. https://doi.org/10.1097/j.jcrs.0000000000000228.

    Article  PubMed  Google Scholar 

  42. Hatch KM, Schultz T, Talamo JH, Dick HB. Femtosecond laser-assisted compared with standard cataract surgery for removal of advanced cataracts. J Cataract Refract Surg. 2015;41(9):1833–8. https://doi.org/10.1016/j.jcrs.2015.10.040.

    Article  PubMed  Google Scholar 

  43. Chen X, Yu Y, Song X, Zhu Y, Wang W, Yao K. Clinical outcomes of femtosecond laser-assisted cataract surgery versus conventional phacoemulsification surgery for hard nuclear cataracts. J Cataract Refract Surg. 2017;43(4):486–91. https://doi.org/10.1016/j.jcrs.2017.01.010.

    Article  PubMed  Google Scholar 

  44. Chee SP, Yang Y, Wong MHY. Randomized controlled trial comparing femtosecond laser-assisted with conventional phacoemulsification on dense cataracts. Am J Ophthalmol. 2021;229:1–7. https://doi.org/10.1016/j.ajo.2020.12.024. Epub ahead of print.

    Article  PubMed  Google Scholar 

  45. Abell RG, Kerr NM, Vote BJ. Toward zero effective phacoemulsification time using femtosecond laser pretreatment. Ophthalmology. 2013;120(5):942–8. https://doi.org/10.1016/j.ophtha.2012.11.045. Epub 2013 Mar 7.

    Article  PubMed  Google Scholar 

  46. Vasavada AR, Vasavada V, Vasavada S, Srivastava S, Vasavada V, Raj S. Femtodelineation to enhance safety in posterior polar cataracts. J Cataract Refract Surg. 2015;41(4):702–7. https://doi.org/10.1016/j.jcrs.2015.02.021.

    Article  PubMed  Google Scholar 

  47. Teshigawara T, Meguro A, Sanjo S, Hata S, Mizuki N. The advantages of femtosecond laser-assisted cataract surgery for zonulopathy. Int Med Case Rep J. 2019;12:109–16. https://doi.org/10.2147/IMCRJ.S189367.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Keener GT. The nucleus division technique for small incision cataract extraction. In: Rozakis GW, editor. Cataract surgery: alternative small incision techniques. 1st ed. New Delhi: Jaypee Brothers; 1995. p. 163–91.

    Google Scholar 

  49. Bhattacharya D. Nuclear management in manual small incision cataract surgery by snare technique. Indian J Ophthalmol. 2009;57(1):27–9. https://doi.org/10.4103/0301-4738.44498.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ianchulev T, Chang DF, Koo E, MacDonald S. Microinterventional endocapsular nucleus disassembly for phacoemulsification-free full-thickness fragmentation. J Cataract Refract Surg. 2018;44(8):932–4. https://doi.org/10.1016/j.jcrs.2018.05.017.

    Article  PubMed  Google Scholar 

  51. Ianchulev T, Chang DF, Koo E, et al. Microinterventional endocapsular nucleus disassembly: novel technique and results of first-in-human randomised controlled study. Br J Ophthalmol. 2019;103(2):176–80. https://doi.org/10.1136/bjophthalmol-2017-311766.

    Article  PubMed  Google Scholar 

  52. Kamoi K, Mochizuki M. Phaco forward-chop technique for managing posterior nuclear plate of hard cataract. J Cataract Refract Surg. 2010;36(1):9–12. https://doi.org/10.1016/j.jcrs.2009.07.047.

    Article  PubMed  Google Scholar 

  53. Wiley WF, Bafna S, Logothetis HD. Comparative study of phacoemulsification parameters with and without nitinol filament nuclear disassembly. J Cataract Refract Surg. 2021;47(8):1028–31. https://doi.org/10.1097/j.jcrs.0000000000000575.

    Article  PubMed  Google Scholar 

  54. Roper GJ, Hoffer KJ, Pamnani RD. Effect of microinterventional endocapsular nucleus disassembly using centripetal loop fragmentation on refractive outcomes after cataract surgery. J Cataract Refract Surg. 2020;46(11):1515–21. https://doi.org/10.1097/j.jcrs.0000000000000320.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitra Nejad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parra, A., Tran, J., Nejad, M. (2023). Capsulotomy and Lens Fragmentation. In: Tsui, E., Fung, S.S.M., Singh, R.B. (eds) Current Advances in Ocular Surgery. Current Practices in Ophthalmology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1661-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1661-0_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1660-3

  • Online ISBN: 978-981-99-1661-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics