Skip to main content

Updates on Therapy for Cornea Edema

  • Chapter
  • First Online:
Current Advances in Ocular Surgery

Part of the book series: Current Practices in Ophthalmology ((CUPROP))

  • 232 Accesses

Abstract

Cornea edema may result from a number of conditions that disrupt the endothelial cell layer including dystrophies, uveitis, surgical manipulation, toxicity, trauma, and elevated intraocular pressure among other known causes. Given the exquisite link of healthy endothelial cell function with physiologic cornea clarity, efforts in the past to resolve cornea edema have revolved around direct replacement of these cells. Prior to the advent of partial thickness corneal transplants, penetrating keratoplasty (PKP) provided the most direct means for replacing Descemet’s membrane and the endothelium. Of course, this approach not only replaced these layers, but also the stroma, Bowman’s layer, and the epithelium. Although a necessary approach for cornea edema where significant stromal scarring has occurred, PKP maintains the highest risk of endothelial rejection and graft failure among corneal allograft transplants [1, 2] with longer times to recovery of functional vision [3] and higher incidences of microbial keratitis [3–5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dunn SP, Gal RL, Kollman C, et al. Corneal graft rejection 10 years after penetrating keratoplasty in the cornea donor study. Cornea. 2014;33:1003–9. https://doi.org/10.1097/ICO.0000000000000212.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Guilbert E, Bullet J, Sandali O, et al. Long-term rejection incidence and reversibility after penetrating and lamellar keratoplasty. Am J Ophthalmol. 2013;155:560–569.e2. https://doi.org/10.1016/J.AJO.2012.09.027.

    Article  PubMed  Google Scholar 

  3. Wagoner MD, Al-Swailem SA, Sutphin JE, et al. Bacterial keratitis after penetrating keratoplasty: incidence, microbiological profile, graft survival, and visual outcome. Ophthalmology. 2007;114:114. https://doi.org/10.1016/J.OPHTHA.2006.10.015.

    Article  Google Scholar 

  4. Wright TM, Afshari NA. Microbial keratitis following corneal transplantation. Am J Ophthalmol. 2006;142:1061–2. https://doi.org/10.1016/J.AJO.2006.06.051.

    Article  PubMed  Google Scholar 

  5. Bates AK, Kirkness CM, Ficker LA, et al. Microbial keratitis after penetrating keratoplasty. Eye (Lond). 1990;4(Pt 1):74–8. https://doi.org/10.1038/EYE.1990.8.

    Article  PubMed  Google Scholar 

  6. Tillett CW. Posterior lamellar keratoplasty. Am J Ophthalmol. 1956;41:530–3. https://doi.org/10.1016/0002-9394(56)91269-7.

    Article  CAS  PubMed  Google Scholar 

  7. Barraquer JI. Lamellar keratoplasty. (special techniques). Ann Ophthalmol. 1972;4:437–69.

    CAS  PubMed  Google Scholar 

  8. Melles GRJ, Lander F, Beekhuis WH, et al. Posterior lamellar keratoplasty for a case of pseudophakic bullous keratopathy. Am J Ophthalmol. 1999;127:340–1. https://doi.org/10.1016/S0002-9394(98)00324-9.

    Article  CAS  PubMed  Google Scholar 

  9. Melles GRJ, Lander F, Nieuwendaal C. Sutureless, posterior lamellar keratoplasty: a case report of a modified technique. Cornea. 2002;21:325–7. https://doi.org/10.1097/00003226-200204000-00018.

    Article  PubMed  Google Scholar 

  10. Van Dooren B, Mulder PGH, Nieuwendaal CP, et al. Endothelial cell density after posterior lamellar keratoplasty (Melles techniques): 3 years follow-up. Am J Ophthalmol. 2004;138:211–7. https://doi.org/10.1016/J.AJO.2004.02.016.

    Article  PubMed  Google Scholar 

  11. Ousley PJ, Terry MA. Stability of vision, topography, and endothelial cell density from 1 year to 2 years after deep lamellar endothelial keratoplasty surgery. Ophthalmology. 2005;112:50–7. https://doi.org/10.1016/J.OPHTHA.2004.07.028.

    Article  PubMed  Google Scholar 

  12. Melles GRJ, Lander F, Rietveld FJR. Transplantation of Descemet’s membrane carrying viable endothelium through a small scleral incision. Cornea. 2002;21:415–8. https://doi.org/10.1097/00003226-200205000-00016.

    Article  PubMed  Google Scholar 

  13. Melles GRJ, Wijdh RHJ, Nieuwendaal CP. A technique to excise the descemet membrane from a recipient cornea (descemetorhexis). Cornea. 2004;23:286–8. https://doi.org/10.1097/00003226-200404000-00011.

    Article  PubMed  Google Scholar 

  14. Gorovoy M, Price FW. New technique transforms corneal transplantation. Cataract Refract Surg Today. 2005;11:55–8.

    Google Scholar 

  15. Price MO, Price FW. Descemet’s stripping endothelial keratoplasty. Curr Opin Ophthalmol. 2007;18:290–4. https://doi.org/10.1097/ICU.0b013e3281a4775b.

    Article  PubMed  Google Scholar 

  16. Price FW, Price MO. Descemet’s stripping with endothelial keratoplasty in 200 eyes: early challenges and techniques to enhance donor adherence. J Cataract Refract Surg. 2006;32:411–8. https://doi.org/10.1016/J.JCRS.2005.12.078.

    Article  PubMed  Google Scholar 

  17. Price MO, Giebel AW, Fairchild KM, et al. Descemet’s membrane endothelial keratoplasty. Prospective multicenter study of visual and refractive outcomes and endothelial survival. Ophthalmology. 2009;116:2361–8. https://doi.org/10.1016/j.ophtha.2009.07.010.

    Article  PubMed  Google Scholar 

  18. Koenig SB, Covert DJ, Dupps WJ, et al. Visual acuity, refractive error, and endothelial cell density six months after Descemet stripping and automated endothelial keratoplasty (DSAEK). Cornea. 2007;26:670–4. https://doi.org/10.1097/ICO.0B013E3180544902.

    Article  PubMed  Google Scholar 

  19. Melles GRJ, Ong TS, Ververs B, et al. Descemet membrane endothelial keratoplasty (DMEK). Cornea. 2006;25:987–90. https://doi.org/10.1097/01.ico.0000248385.16896.34.

    Article  PubMed  Google Scholar 

  20. Melles GRJ, Ong TS, Ververs B, et al. Preliminary clinical results of Descemet membrane endothelial keratoplasty. Am J Ophthalmol. 2008;145:145. https://doi.org/10.1016/J.AJO.2007.09.021.

    Article  Google Scholar 

  21. Ham L, Dapena I, Van Luijk C, et al. Descemet membrane endothelial keratoplasty (DMEK) for Fuchs endothelial dystrophy: review of the first 50 consecutive cases. Eye (Lond). 2009;23:1990–8. https://doi.org/10.1038/EYE.2008.393.

    Article  CAS  PubMed  Google Scholar 

  22. Deng SX, Lee WB, Hammersmith KM, et al. Descemet membrane endothelial Keratoplasty: safety and outcomes: a report by the American Academy of ophthalmology. Ophthalmology. 2018;125:295–310. https://doi.org/10.1016/J.OPHTHA.2017.08.015.

    Article  PubMed  Google Scholar 

  23. Chamberlain W, Lin CC, Austin A, et al. Descemet endothelial thickness comparison trial: a randomized trial comparing ultrathin Descemet stripping automated endothelial Keratoplasty with Descemet membrane endothelial Keratoplasty. Ophthalmology. 2019;126:19–26. https://doi.org/10.1016/J.OPHTHA.2018.05.019.

    Article  PubMed  Google Scholar 

  24. Lie JT, Birbal R, Ham L, et al. Donor tissue preparation for Descemet membrane endothelial keratoplasty. J Cataract Refract Surg. 2008;34:1578–83. https://doi.org/10.1016/J.JCRS.2008.05.036.

    Article  PubMed  Google Scholar 

  25. Kruse FE, Laaser K, Cursiefen C, et al. A stepwise approach to donor preparation and insertion increases safety and outcome of Descemet membrane endothelial keratoplasty. Cornea. 2011;30:580–7. https://doi.org/10.1097/ICO.0B013E3182000E2E.

    Article  PubMed  Google Scholar 

  26. Busin M, Scorcia V, Patel AK, et al. Donor tissue preparation for Descemet membrane endothelial keratoplasty. Br J Ophthalmol. 2011;95:1172–3. https://doi.org/10.1136/bjo.2010.195651.

    Article  PubMed  Google Scholar 

  27. Venzano D, Pagani P, Randazzo N, et al. Descemet membrane air-bubble separation in donor corneas. J Cataract Refract Surg. 2010;36:2022–7. https://doi.org/10.1016/j.jcrs.2010.10.013.

    Article  PubMed  Google Scholar 

  28. Zarei-Ghanavati S, Khakshoor H, Zarei-Ghanavati M. Reverse big bubble: a new technique for preparing donor tissue of Descemet membrane endothelial keratoplasty. Br J Ophthalmol. 2010;94:1110–1. https://doi.org/10.1136/BJO.2009.170803.

    Article  CAS  PubMed  Google Scholar 

  29. Yoeruek E, Bayyoud T, Hofmann J, et al. Comparison of pneumatic dissection and forceps dissection in Descemet membrane endothelial keratoplasty: histological and ultrastructural findings. Cornea. 2012;31:920–5. https://doi.org/10.1097/ICO.0B013E31823F7870.

    Article  PubMed  Google Scholar 

  30. McKee HD, Irion LCD, Carley FM, et al. Donor preparation using pneumatic dissection in endothelial keratoplasty: DMEK or DSEK? Cornea. 2012;31:798–800. https://doi.org/10.1097/ICO.0B013E31823F76A3.

    Article  PubMed  Google Scholar 

  31. Price MO, Price FW. Descemet’s membrane endothelial keratoplasty surgery: update on the evidence and hurdles to acceptance. Curr Opin Ophthalmol. 2013;24:329–35. https://doi.org/10.1097/ICU.0B013E32836229AB.

    Article  PubMed  Google Scholar 

  32. Kim EC, Bonfadini G, Todd L, et al. Simple, inexpensive, and effective injector for descemet membrane endothelial keratoplasty. Cornea. 2014;33:649–52. https://doi.org/10.1097/ICO.0000000000000121.

    Article  PubMed  Google Scholar 

  33. Arnalich-Montiel F, Muñoz-Negrete FJ, De Miguel MP. Double port injector device to reduce endothelial damage in DMEK. Eye (Lond). 2014;28:748–51. https://doi.org/10.1038/EYE.2014.67.

    Article  CAS  PubMed  Google Scholar 

  34. Dapena I, Moutsouris K, Droutsas K, et al. Standardized “no-touch” technique for descemet membrane endothelial keratoplasty. Arch Ophthalmol (Chicago, Ill 1960). 2011;129:88–94. https://doi.org/10.1001/ARCHOPHTHALMOL.2010.334.

    Article  Google Scholar 

  35. Newman LR, Tran KD, Odell K, et al. Minimizing endothelial cell loss caused by orientation stamps on preloaded Descemet membrane endothelial Keratoplasty grafts. Cornea. 2019;38:233–7. https://doi.org/10.1097/ICO.0000000000001809.

    Article  PubMed  Google Scholar 

  36. Veldman PB, Dye PK, Holiman JD, et al. Stamping an S on DMEK donor tissue to prevent upside-down grafts: laboratory validation and detailed preparation technique description. Cornea. 2015;34:1175–8. https://doi.org/10.1097/ICO.0000000000000522.

    Article  PubMed  Google Scholar 

  37. Veldman PB, Dye PK, Holiman JD, et al. The S-stamp in Descemet membrane endothelial Keratoplasty safely eliminates upside-down graft implantation. Ophthalmology. 2016;123:161–4. https://doi.org/10.1016/j.ophtha.2015.08.044.

    Article  PubMed  Google Scholar 

  38. Jacob S, Agarwal A, Kumar DA. Endoilluminator-assisted Descemet membrane endothelial keratoplasty and endoilluminator-assisted pre-Descemet endothelial keratoplasty. Clin Ophthalmol. 2015;9:2123–5. https://doi.org/10.2147/OPTH.S95282.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Burkhart ZN, Feng MT, Price MO, et al. Handheld slit beam techniques to facilitate DMEK and DALK. Cornea. 2013;32:722–4. https://doi.org/10.1097/ICO.0B013E31827797E7.

    Article  PubMed  Google Scholar 

  40. Deng SX, Sanchez PJ, Chen L. Clinical outcomes of Descemet membrane endothelial keratoplasty using eye bank-prepared tissues. Am J Ophthalmol. 2015;159:590–6. https://doi.org/10.1016/J.AJO.2014.12.007.

    Article  PubMed  Google Scholar 

  41. Liarakos VS, Dapena I, Ham L, et al. Intraocular graft unfolding techniques in Descemet membrane endothelial Keratoplasty. JAMA Ophthalmol. 2013;131:29–35. https://doi.org/10.1001/2013.JAMAOPHTHALMOL.4.

    Article  PubMed  Google Scholar 

  42. Sarnicola C, Sabatino F, Sarnicola E, et al. Cannula-assisted technique to unfold grafts in descemet membrane endothelial keratoplasty. Cornea. 2019;38:275–9. https://doi.org/10.1097/ICO.0000000000001827.

    Article  PubMed  Google Scholar 

  43. Koçluk Y, Kasım B. Effective cannula vacuuming maneuver to unfold the Descemet membrane graft. Eye Contact Lens. 2021;47:670–3. https://doi.org/10.1097/ICL.0000000000000804.

    Article  PubMed  Google Scholar 

  44. Güell JL, Morral M, Gris O, et al. Bimanual technique for insertion and positioning of endothelium-Descemet membrane graft in Descemet membrane endothelial keratoplasty. Cornea. 2013;32:1521–6. https://doi.org/10.1097/ICO.0B013E3182933AEE.

    Article  PubMed  Google Scholar 

  45. Ang M, Mehta JS, Newman SD, et al. Descemet membrane endothelial Keratoplasty: preliminary results of a donor insertion pull-through technique using a donor mat device. Am J Ophthalmol. 2016;171:27–34. https://doi.org/10.1016/J.AJO.2016.08.023.

    Article  PubMed  Google Scholar 

  46. Yu AC, Myerscough J, Spena R, et al. Three-year outcomes of tri-folded endothelium-in Descemet membrane endothelial Keratoplasty with pull-through technique. Am J Ophthalmol. 2020;219:121–31. https://doi.org/10.1016/J.AJO.2020.07.004.

    Article  PubMed  Google Scholar 

  47. Woo JH, Htoon HM, Tan D. Hybrid Descemet membrane endothelial Keratoplasty (H-DMEK): results of a donor insertion pull-through technique using donor stroma as carrier. Br J Ophthalmol. 2020;104:1358–62. https://doi.org/10.1136/BJOPHTHALMOL-2019-314932.

    Article  PubMed  Google Scholar 

  48. Dapena I, Ham L, Droutsas K, et al. Learning curve in Descemet’s membrane endothelial Keratoplasty: first series of 135 consecutive cases. Ophthalmology. 2011;118:2147–54. https://doi.org/10.1016/J.OPHTHA.2011.03.037.

    Article  PubMed  Google Scholar 

  49. Eye Bank Association of America (EBAA). 2019 eye banking statistical report. Washington, DC: EBAA; 2020.

    Google Scholar 

  50. Braunstein RE, Airiani S, Chang MA, et al. Corneal edema resolution after “descemetorhexis.”. J Cataract Refract Surg. 2003;29:1436–9. https://doi.org/10.1016/S0886-3350(02)01984-3.

    Article  PubMed  Google Scholar 

  51. Balachandran C, Ham L, Verschoor CA, et al. Spontaneous corneal clearance despite graft detachment in Descemet membrane endothelial Keratoplasty. Am J Ophthalmol. 2009;148:148. https://doi.org/10.1016/j.ajo.2009.02.033.

    Article  Google Scholar 

  52. Dirisamer M, Ham L, Dapena I, et al. Descemet membrane endothelial transfer: “free-floating” donor Descemet implantation as a potential alternative to “keratoplasty.”. Cornea. 2012;31:194–7. https://doi.org/10.1097/ICO.0B013E31821C9AFC.

    Article  PubMed  Google Scholar 

  53. Patel DV, Phang KL, Grupcheva CN, et al. Surgical detachment of Descemet’s membrane and endothelium imaged over time by in vivo confocal microscopy. Clin Exp Ophthalmol. 2004;32:539–42. https://doi.org/10.1111/J.1442-9071.2004.00875.X.

    Article  PubMed  Google Scholar 

  54. Zvi T, Nadav B, Itamar K, et al. Inadvertent descemetorhexis. J Cataract Refract Surg. 2005;31:234–5. https://doi.org/10.1016/J.JCRS.2004.11.001.

    Article  PubMed  Google Scholar 

  55. Agarwal A, Jacob S, Agarwal A, et al. Iatrogenic descemetorhexis as a complication of phacoemulsification. J Cataract Refract Surg. 2006;32:895–7. https://doi.org/10.1016/j.jcrs.2006.01.070.

    Article  PubMed  Google Scholar 

  56. Pan JCH, Eong KGA. Spontaneous resolution of corneal oedema after inadvertent “descemetorhexis” during cataract surgery. Clin Exp Ophthalmol. 2006;34:896–7. https://doi.org/10.1111/J.1442-9071.2006.01360.X.

    Article  PubMed  Google Scholar 

  57. Srivastava VK, Singh A, Chowdhary R. Spontaneous resolution of corneal Oedema after inadvertent Descemetorhexis during cataract surgery. Med J Armed Forces India. 2010;66:177–9. https://doi.org/10.1016/S0377-1237(10)80142-X.

    Article  CAS  PubMed  Google Scholar 

  58. Shah RD, Randleman JB, Grossniklaus HE. Spontaneous corneal clearing after Descemet’s stripping without endothelial replacement. Ophthalmology. 2012;119:256–60. https://doi.org/10.1016/J.OPHTHA.2011.07.032.

    Article  PubMed  Google Scholar 

  59. Koenig SB. Long-term corneal clarity after spontaneous repair of an iatrogenic descemetorhexis in a patient with Fuchs dystrophy. Cornea. 2013;32:886–8. https://doi.org/10.1097/ICO.0B013E3182886AAA.

    Article  PubMed  Google Scholar 

  60. Joyce NC. Proliferative capacity of the corneal endothelium. Prog Retin Eye Res. 2003;22:359–89. https://doi.org/10.1016/S1350-9462(02)00065-4.

    Article  CAS  PubMed  Google Scholar 

  61. Borkar DS, Veldman P, Colby KA. Treatment of Fuchs endothelial dystrophy by Descemet stripping without endothelial Keratoplasty. Cornea. 2016;35:1267–73. https://doi.org/10.1097/ICO.0000000000000915.

    Article  PubMed  Google Scholar 

  62. Koenig SB. Planned Descemetorhexis without endothelial Keratoplasty in eyes with Fuchs corneal endothelial dystrophy. Cornea. 2015;34:1149–51. https://doi.org/10.1097/ICO.0000000000000531.

    Article  PubMed  Google Scholar 

  63. Huang MJ, Kane S, Dhaliwal DK. Descemetorhexis without endothelial Keratoplasty versus DMEK for treatment of Fuchs endothelial corneal dystrophy. Cornea. 2018;37:1479–83. https://doi.org/10.1097/ICO.0000000000001742.

    Article  PubMed  Google Scholar 

  64. Davies E, Jurkunas U, Pineda R. Predictive factors for corneal clearance after Descemetorhexis without endothelial Keratoplasty. Cornea. 2018;37:137–40. https://doi.org/10.1097/ICO.0000000000001427.

    Article  PubMed  Google Scholar 

  65. Serle JB, Katz LJ, McLaurin E, et al. Two phase 3 clinical trials comparing the safety and efficacy of Netarsudil to Timolol in patients with elevated intraocular pressure: rho kinase elevated IOP treatment trial 1 and 2 (ROCKET-1 and ROCKET-2). Am J Ophthalmol. 2018;186:116–27. https://doi.org/10.1016/J.AJO.2017.11.019.

    Article  CAS  PubMed  Google Scholar 

  66. Moshirfar M, Parker L, Birdsong OC, et al. Use of rho kinase inhibitors in ophthalmology: a review of the literature. Med Hypothesis Discov Innov Ophthalmol. 2018;7:101. Accessed 05 Dec 2021

    PubMed  PubMed Central  Google Scholar 

  67. Okumura N, Okazaki Y, Inoue R, et al. Effect of the rho-associated kinase inhibitor eye drop (Ripasudil) on corneal endothelial wound healing. Invest Ophthalmol Vis Sci. 2016;57:1284–92. https://doi.org/10.1167/IOVS.15-18586.

    Article  CAS  PubMed  Google Scholar 

  68. Okumura N, Kinoshita S, Koizumi N. Application of rho kinase inhibitors for the treatment of corneal endothelial diseases. J Ophthalmol. 2017;2017:1. https://doi.org/10.1155/2017/2646904.

    Article  CAS  Google Scholar 

  69. Moloney G, Petsoglou C, Ball M, et al. Descemetorhexis without grafting for Fuchs endothelial dystrophy-supplementation with topical Ripasudil. Cornea. 2017;36:642–8. https://doi.org/10.1097/ICO.0000000000001209.

    Article  PubMed  Google Scholar 

  70. Koizumi N, Sakamoto Y, Okumura N, et al. Cultivated corneal endothelial cell sheet transplantation in a primate model. Invest Ophthalmol Vis Sci. 2007;48:4519–26. https://doi.org/10.1167/IOVS.07-0567.

    Article  PubMed  Google Scholar 

  71. Mimura T, Yamagami S, Yokoo S, et al. Cultured human corneal endothelial cell transplantation with a collagen sheet in a rabbit model. Invest Ophthalmol Vis Sci. 2004;45:2992–7. https://doi.org/10.1167/IOVS.03-1174.

    Article  PubMed  Google Scholar 

  72. Ishino Y, Sano Y, Nakamura T, et al. Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation. Invest Ophthalmol Vis Sci. 2004;45:800–6. https://doi.org/10.1167/IOVS.03-0016.

    Article  PubMed  Google Scholar 

  73. Okumura N, Sakamoto Y, Fujii K, et al. Rho kinase inhibitor enables cell-based therapy for corneal endothelial dysfunction. Sci Rep. 2016;6:6. https://doi.org/10.1038/SREP26113.

    Article  Google Scholar 

  74. Okumura N, Koizumi N, Ueno M, et al. ROCK inhibitor converts corneal endothelial cells into a phenotype capable of regenerating in vivo endothelial tissue. Am J Pathol. 2012;181:268–77. https://doi.org/10.1016/J.AJPATH.2012.03.033.

    Article  CAS  PubMed  Google Scholar 

  75. Kinoshita S, Koizumi N, Ueno M, et al. Injection of cultured cells with a ROCK inhibitor for bullous keratopathy. N Engl J Med. 2018;378:995–1003. https://doi.org/10.1056/NEJMOA1712770.

    Article  CAS  PubMed  Google Scholar 

  76. Numa K, Imai K, Ueno M, et al. Five-year follow-up of first 11 patients undergoing injection of cultured corneal endothelial cells for corneal endothelial failure. Ophthalmology. 2021;128:504–14. https://doi.org/10.1016/J.OPHTHA.2020.09.002.

    Article  PubMed  Google Scholar 

  77. Birbal RS, Hsien S, Zygoura V, et al. Outcomes of hemi-Descemet membrane endothelial keratoplasty for Fuchs endothelial corneal dystrophy. Cornea. 2018;37:854–8. https://doi.org/10.1097/ICO.0000000000001578.

    Article  PubMed  Google Scholar 

  78. Gerber-Hollbach N, Parker J, Baydoun L, et al. Preliminary outcome of hemi-Descemet membrane endothelial keratoplasty for Fuchs endothelial dystrophy. Br J Ophthalmol. 2016;100:1564–8. https://doi.org/10.1136/bjophthalmol-2015-307783.

    Article  PubMed  Google Scholar 

  79. Lam FC, Baydoun L, Dirisamer M, et al. Hemi-descemet membrane endothelial keratoplasty transplantation: a potential method for increasing the pool of endothelial graft tissue. JAMA Ophthalmol. 2014;132:1469–73. https://doi.org/10.1001/jamaophthalmol.2014.3328.

    Article  PubMed  Google Scholar 

  80. Lam FC, Baydoun L, Satué M, et al. One year outcome of hemi-Descemet membrane endothelial keratoplasty. Graefes Arch Clin Exp Ophthalmol. 2015;253:1955–8. https://doi.org/10.1007/S00417-015-3097-9.

    Article  PubMed  Google Scholar 

  81. Zygoura V, Baydoun L, Ham L, et al. Quarter-descemet membrane endothelial keratoplasty (quarter-DMEK) for Fuchs endothelial corneal dystrophy: 6 months clinical outcome. Br J Ophthalmol. 2018;102:1425–30. https://doi.org/10.1136/bjophthalmol-2017-311398.

    Article  PubMed  Google Scholar 

  82. Birbal RS, Ni Dhubhghaill S, Baydoun L, et al. Quarter-Descemet membrane endothelial Keratoplasty: one- to two-year clinical outcomes. Cornea. 2020;39:277–82. https://doi.org/10.1097/ICO.0000000000002127.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishan Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, K., Deng, S.X. (2023). Updates on Therapy for Cornea Edema. In: Tsui, E., Fung, S.S.M., Singh, R.B. (eds) Current Advances in Ocular Surgery. Current Practices in Ophthalmology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1661-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1661-0_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1660-3

  • Online ISBN: 978-981-99-1661-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics