Skip to main content

Cellulose Morphologies for Energy Applications

  • Chapter
  • First Online:
Regenerated Cellulose and Composites

Abstract

Cellulosic materials generated from lignocellulosic biomass are significantly being used for so many applications including for energy application. The exemplary applications range from many types of nanomaterials, bioenergy, conducting materials, battery or electrodes, and also hybrid nanocomposites. The cellulosic materials being generated and reformed for these applications are characterized via its morphological analysis depicting the crucial indicators of benefits and advantages from various lignocellulosic biomass. Common and emerging techniques are discussed on the morphological change on the cellulose before and after formation. The analytical skills required to justify the effectiveness of these applications are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arora, P., Zhang, Z.: Battery separators. Chem. Rev. 104(10), 4419–4462 (2004)

    Article  CAS  Google Scholar 

  2. Baptista, A. C., Ropio, I., Romba, B., Nobre, J. P., Henriques, C., Silva, J. C., … Ferreira, I.: Cellulose-based electrospun fibers functionalized with polypyrrole and polyaniline for fully organic batteries. J. Mater. Chem. A 6(1), 256–265 (2018)

    Google Scholar 

  3. Balat, H., Kirtay, E.: Hydrogen from biomass - present scenario and future prospects. Int. J. Hydrogen Energy 35(14), 7416–7426 (2010)

    Article  CAS  Google Scholar 

  4. Bhaskar, T., Bhavya, B., Singh, R., Naik, D.V., Kumar, A. and Goyal, H.B.: Thermochemical conversion of biomass to biofuels. Biofuels: Alternative feedstocks and conversion processes, 51–75 (2011)

    Google Scholar 

  5. Buqa, H., Holzapfel, M., Krumeich, F., Veit, C., Novák, P.: Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries. J. Power Sources 161(1), 617–622 (2006)

    Article  CAS  Google Scholar 

  6. Carlsson, D.O., Sjödin, M., Nyholm, L., Strømme, M.: A comparative study of the effects of rinsing and aging of polypyrrole/nanocellulose composites on their electrochemical properties. J. Phys. Chem. B 117(14), 3900–3910 (2013)

    Article  CAS  Google Scholar 

  7. Cheng, H., Lijie, L., Wang, B., Feng, X., Mao, Z., Vancso, G.J., Sui, X.: Multifaceted applications of cellulosic porous materials in environment, energy, and health. Prog. Polym. Sci. 106, 101253 (2020)

    Article  CAS  Google Scholar 

  8. Chiappone, A., Nair, J. R., Gerbaldi, C., Jabbour, L., Bongiovanni, R., Zeno, E., … Penazzi, N.: Microfibrillated cellulose as reinforcement for Li-ion battery polymer electrolytes with excellent mechanical stability. J. Power Sources 196(23), 10280–10288 (2011)

    Google Scholar 

  9. Chun, S.-J., Choi, E.-S., Lee, E.-H., Kim, J.H., Lee, S.-Y., Lee, S.-Y.: Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. J. Mater. Chem. 22(32), 16618–16626 (2012)

    Article  CAS  Google Scholar 

  10. Costa, S.V., Pingel, P., Janietz, S. and Nogueira, A.F.: Inverted organic solar cells using nanocellulose as substrate. J. Appl. Polym. Sci. 133(28) (2016)

    Google Scholar 

  11. Dinesh, G., Kandasubramanian, B.: Fabrication of transparent paper devices from nanocellulose fiber. Mater. Chem. Phys., 125707. https://doi.org/10.1016/j.matchemphys.2022.125707 (2022)

  12. Dong, T., Zhang, J., Xu, G., Chai, J., Du, H., Wang, L., … Jia, Q.: A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy Environ. Sci. 11(5), 1197–1203 (2018)

    Google Scholar 

  13. Du, X., Zhang, Z., Liu, W., Deng, Y.: Nanocellulose-based conductive materials and their emerging applications in energy devices-A review. Nano Energy 35, 299–320 (2017)

    Article  CAS  Google Scholar 

  14. Dutta, S., Kim, J., Ide, Y., Kim, J.H., Hossain, M.S.A., Bando, Y., … Wu, K. C.-W.: 3D network of cellulose-based energy storage devices and related emerging applications. Mater. Horiz. 4(4), 522–545 (2017)

    Google Scholar 

  15. Guo, M., Song, W., Buhain, J.: Bioenergy and biofuels: Histroy, status and perspective. Renew. Sustain. Energy Rev. 42, 712–725 (2015)

    Article  CAS  Google Scholar 

  16. Haq, I.u., Qaisar, K., Nawaz, A., Akram, F., Mukhtar, H., Xin, Z. H., Xu, Y., Mumtaz, M.W., Rashid, U., Ghani, W.A., Choong, T.S.Y.: Advances in Valorization of Lignocellulosic Biomass towards Energy Generation. Catalysts 11(3) (2021)

    Google Scholar 

  17. He, D., Cho, S.Y., Kim, D.W., Lee, C., Kang, Y.: Enhanced ionic conductivity of semi-IPN solid polymer electrolytes based on star-shaped oligo (ethyleneoxy) cyclotriphosphazenes. Macromolecules 45(19), 7931–7938 (2012)

    Article  CAS  Google Scholar 

  18. Hilten, R., Speir, R., Kastner, J., Das, K.C.: Production of aromatic green gasoline additives via catalytic pyrolysis of acidulated peanut oil soap stock. Biores. Technol. 102(17), 8288–8294 (2011)

    Article  CAS  Google Scholar 

  19. Hsu, H.H., et al.: An eco-friendly, nanocellulose/RGO/in situ formed polyaniline for flexible and free-standing supercapacitors. ACS Sustain. Chem. Eng. 7(5), 4766–4776 (2019)

    Article  CAS  Google Scholar 

  20. Hu, L., et al.: Transparent and conductive paper from nanocellulose fibers. Energy Environ. Sci. 6(2), 513–518 (2013)

    Article  CAS  Google Scholar 

  21. Hu, L., Choi, J.W., Yang, Y., Jeong, S., La Mantia, F., Cui, L.-F., Cui, Y.: Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci. 106(51), 21490–21494 (2009)

    Article  CAS  Google Scholar 

  22. Hu, L., Wu, H., La Mantia, F., Yang, Y., Cui, Y.: Thin, flexible secondary Li-ion paper batteries. ACS Nano 4(10), 5843–5848 (2010)

    Article  CAS  Google Scholar 

  23. Hu, W., Chen, S., Yang, Z., Liu, L., Wang, H.: Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J. Phys. Chem. B 115(26), 8453–8457 (2011)

    Article  CAS  Google Scholar 

  24. Huang, J., et al.: Highly transparent and flexible nanopaper transistors. ACS Nano 7(3), 2106–2113 (2013)

    Article  CAS  Google Scholar 

  25. Ibarra-Gonzalez, P., Rong, B.G.: A review of the current state of biofuels production from lignocellulosic biomass using thermochemical conversion routes. Chin. J. Chem. Eng. 27(7), 1523–1535 (2019)

    Article  CAS  Google Scholar 

  26. Iliev, S.: A comparison of ethanol, methanol and butanol blending with gasoline and its effect on engine performance and emissions using engine simulation. Processes, 9(8) (2021)

    Google Scholar 

  27. Jang, J.H., Lee, S.H., Kim, N.H.: Recent research activities in solid and liquid bioenergy from lignocellulosic biomass. Wood Res. J. 6, 2 (2015)

    Google Scholar 

  28. Jiang, J., Xu, J., Song, Z.: Review of the direct thermochemical conversion of lignocellulosic biomass for liquid fuels. Front. Agric. Sci. Eng. 2(1) (2015)

    Google Scholar 

  29. Jin, S., Jiang, Y., Ji, H., Yu, Y.: Advanced 3D current collectors for lithium-based batteries. Adv. Mater. 30(48), 1802014 (2018)

    Article  Google Scholar 

  30. Kelly, F.M., Johnston, J.H., Borrmann, T., Richardson, M.J.: Functionalised hybrid materials of conducting polymers with individual fibres of cellulose. Wiley Online Library (2007)

    Google Scholar 

  31. Kim, J.H., et al.: Nanocellulose for energy storage systems: beyond the limits of synthetic materials. Adv. Mater. 31(20), 1–16 (2019)

    Article  CAS  Google Scholar 

  32. Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., Dorris, A.: Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. 50(24), 5438–5466 (2011)

    Article  CAS  Google Scholar 

  33. Ko, Y., Kwon, M., Bae, W.K., Lee, B., Lee, S.W., Cho, J.: Flexible supercapacitor electrodes based on real metal-like cellulose papers. Nat. Commun. 8(1), 1–11 (2017)

    Article  CAS  Google Scholar 

  34. Kuang, Y., Chen, C., Pastel, G., Li, Y., Song, J., Mi, R., … Yang, K.: Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices. Adv. Energy Mater. 8(33), 1802398 (2018)

    Google Scholar 

  35. Kwon, S.M., Kim, N.H., Cha, D.S.: An investigation on the transition characteristics of the wood cell walls during carbonization. Wood Sci. Technol. 43(5), 487–498 (2009)

    Article  CAS  Google Scholar 

  36. Lepage, T., Kammoun, M., Schmetz, Q. and Richel, A.: Biomass-to-hydrogen: a review of main routes production, processes evaluation and techno-economical assessment. Biomass & Bioenergy 144 (2021)

    Google Scholar 

  37. Li, H., Cheng, Z., Zhang, Q., Natan, A., Yang, Y., Cao, D., Zhu, H.: Bacterial-derived, compressible, and hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 18(11), 7407–7413 (2018)

    Article  CAS  Google Scholar 

  38. Li, Y., et al.: The aminosilane functionalization of cellulose nanofibrils and the mechanical and CO2 adsorption characteristics of their aerogel. Ind. Eng. Chem. Res. 59(7), 2874–2882 (2020)

    Article  CAS  Google Scholar 

  39. Limayem, A., Ricke, S.C.: Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog. Energy Combust. Sci. 38(4), 449–467 (2012)

    Article  CAS  Google Scholar 

  40. Liu, W.-J., Yu, H.-Q.: Thermochemical conversion of lignocellulosic biomass into mass-producible fuels: emerging technology progress and environmental sustainability evaluation. ACS Environmental Au (2021)

    Google Scholar 

  41. Lubwama, M., Yiga, V.A., Ssempijja, I., Lubwama, H.N.: Thermal and Mechanical characteristics of local firewood species and resulting charcoal produced by slow pyrolysis. Biomass Convers. Biorefinery (2021)

    Google Scholar 

  42. Magnusson, L., Islam, R., Sparling, R., Levin, D., Cicek, N.: Direct hydrogen production from cellulosic waste materials with a single-step dark fermentation process. Int. J. Hydrogen Energy 33(20), 5398–5403 (2008)

    Article  CAS  Google Scholar 

  43. Mateo, S. et al.: Nanocellulose from agricultural wastes: Products and applications—a review. Processes 9(9) (2021)

    Google Scholar 

  44. Mehta, S., Jha, S., Liang, H.: Lignocellulose materials for supercapacitor and battery electrodes: a review. Renew. Sustain. Energy Rev. 134, 110345 (2020)

    Article  CAS  Google Scholar 

  45. Mihranyan, A., Nyholm, L., Bennett, A.E.G., Strømme, M.: A novel high specific surface area conducting paper material composed of polypyrrole and Cladophora cellulose. J. Phys. Chem. B 112(39), 12249–12255 (2008)

    Article  CAS  Google Scholar 

  46. Mohanty, A.K., Misra, M., Drzal, L.T.: Natural fibers, biopolymers, and biocomposites. CRC Press (2005)

    Book  Google Scholar 

  47. Mondal, S.: Preparation, properties and applications of nanocellulosic materials. Carbohyd. Polym. 163, 301–316 (2017)

    Article  CAS  Google Scholar 

  48. Nair, J. R., Chiappone, A., Gerbaldi, C., Ijeri, V. S., Zeno, E., Bongiovanni, R., … Penazzi, N.: Novel cellulose reinforcement for polymer electrolyte membranes with outstanding mechanical properties. Electrochim. Acta 57, 104–111 (2011)

    Google Scholar 

  49. Nogi, M., et al.: Transparent conductive nanofiber paper for foldable solar cells. Sci. Rep. 5, 1–7 (2015)

    Article  Google Scholar 

  50. Nogi, M., Iwamoto, S., Nakagaito, A.N., Yano, H.: Optically transparent nanofiber paper. Adv. Mater. 21(16), 1595–1598 (2009)

    Article  CAS  Google Scholar 

  51. Nyström, G., Razaq, A., Strømme, M., Nyholm, L., Mihranyan, A.: Ultrafast all-polymer paper-based batteries. Nano Lett. 9(10), 3635–3639 (2009)

    Article  Google Scholar 

  52. Pagliaro, M., et al.: Application of nanocellulose composites in the environmental engineering: a review. J. Compos. Compd. 3(7), 114–128 (2021)

    Google Scholar 

  53. Palem, R.R., Ramesh, S., Bathula, C., Kakani, V., Saratale, G.D., Yadav, H.M., … Lee, S.-H.: Enhanced supercapacitive behavior by CuO@ MnO2/carboxymethyl cellulose composites. Ceram. Int. 47(19), 26738–26747 (2021)

    Google Scholar 

  54. Pandey, J.K., Takagi, H., Nakagaito, A.N., Saini, D.R., Ahn, S.-H.: An overview on the cellulose based conducting composites. Compos. B Eng. 43(7), 2822–2826 (2012)

    Article  CAS  Google Scholar 

  55. Pasquale, G., Vazquez, P., Romanelli, G., Baronetti, G.: Catalytic upgrading of levulinic acid to ethyl levulinate using silica-included Wells-Dawson heteropolyacid as catalyst. Cat. Com. 18, 115–120 (2012)

    Article  CAS  Google Scholar 

  56. Pérez-Madrigal, M.M., Edo, M.G., Alemán, C.: November 7). Powering the future: application of cellulose-based materials for supercapacitors. Green Chem. 18, 5930–5956 (2016)

    Article  Google Scholar 

  57. Pomerantseva, E., Bonaccorso, F., Feng, X., Cui, Y., Gogotsi, Y.: Energy storage: the future enabled by nanomaterials. Science 366, eaan8285 (2019)

    Google Scholar 

  58. Qi, D.H., Lee, C.F.: Combustion and emissions behaviour for ethanol-gasoline blended fuels in a multipoint electronic fuel injection engine. Int. J. Sustain. Energ. 35(4), 323–338 (2014)

    Article  Google Scholar 

  59. Sabrina, Q., Ratri, C. R., Hardiansyah, A., Lestariningsih, T., Subhan, A., Rifai, A., … Uyama, H.: Preparation and characterization of nanofibrous cellulose as solid polymer electrolyte for lithium-ion battery applications. RSC Adv. 11(37), 22929–22936 (2021)

    Google Scholar 

  60. Safari, F., Tavasoli, A., Ataei, A., Choi, J.-K.: Hydrogen and syngas production from gasification of lignocellulosic biomass in supercritical water media. Int. J. Recycl. Org. Waste Agric. 4(2), 121–125 (2015)

    Article  Google Scholar 

  61. Salakkam, A., Plangklang, P., Sittijunda, S., Kongkeitkajorn, B., Lunprom, S., Reungsang, A.: Bio-hydrogen and methane production from lignocellulosic materials. Biomass Bioenergy-Recent. Trends Futur. Chall. (2019)

    Google Scholar 

  62. Samsudin, A.S., Lai, H.M., Isa, M.I.N.: Biopolymer materials based carboxymethyl cellulose as a proton conducting biopolymer electrolyte for application in rechargeable proton battery. Electrochim. Acta 129, 1–13 (2014)

    Article  CAS  Google Scholar 

  63. Sehaqui, H., Liu, A., Zhou, Q., Berglund, L.A.: Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromol 11(9), 2195–2198 (2010)

    Article  CAS  Google Scholar 

  64. Shak, K.P.Y., Pang, Y.L., Mah, S.K.: Nanocellulose: recent advances and its prospects in environmental remediation. Beilstein J. Nanotechnol. 9(1), 2479–2498 (2018)

    Article  CAS  Google Scholar 

  65. Sheng, J., Tong, S., He, Z., Yang, R.: Recent developments of cellulose materials for lithium-ion battery separators. Cellulose 24(10), 4103–4122 (2017)

    Article  CAS  Google Scholar 

  66. Tanger, P., Field, J.L., Jahn, C.E., Defoort, M.W., Leach, J.E.: Biomass for thermochemical conversion: targets and challenges. Front Plant Sci 4, 218 (2013)

    Article  Google Scholar 

  67. Trubetskaya, A., Matsakas, L.: Special issue: biochemical and thermochemical conversion processes of lignocellulosic biomass fractionated streams. Processes 9(6) (2021)

    Google Scholar 

  68. Venugopal, G., Moore, J., Howard, J., Pendalwar, S.: Characterization of microporous separators for lithium-ion batteries. J. Power Sources 77(1), 34–41 (1999)

    Article  CAS  Google Scholar 

  69. Verardi, A., Lopresto, C.G., Blasi, A., Chakraborty, S., Calabro, V.: Bioconversion of lignocellulosic biomass to bioethanol and biobutanol. Lignocellul. Biomass Liq. Biofuels: 67–124 (2020)

    Google Scholar 

  70. Wang, H., Bian, L., Zhou, P., Tang, J., Tang, W.: Core–sheath structured bacterial cellulose/polypyrrole nanocomposites with excellent conductivity as supercapacitors. J. Mater. Chem. A 1(3), 578–584 (2013)

    Article  CAS  Google Scholar 

  71. Wang, X.: Synthesis and characterization of amine-modified spherical nanocellulose aerogels. J. Mater. Sci. 53(18), 13304–13315. https://doi.org/10.1007/s10853-018-2595-7 (2018)

  72. Wang, X., Yao, C., Wang, F., Li, Z.: Cellulose-based nanomaterials for energy applications. Small 13(42), 1–19 (2017)

    Article  Google Scholar 

  73. Wang, Z., Lee, Y., Kim, S., Seo, J., Lee, S., Nyholm, L.: Why cellulose-based electrochemical energy storage devices? Adv. Mater. 33(28), 2000892 (2021)

    Article  CAS  Google Scholar 

  74. Wang, Z., Pan, R., Ruan, C., Edström, K., Strømme, M., Nyholm, L.: Redox-Active Separators for Lithium-Ion Batteries. Advanced Science 5(3), 1700663 (2018)

    Article  Google Scholar 

  75. Wang, Z., Tammela, P., Strømme, M., Nyholm, L.: Nanocellulose coupled flexible polypyrrole@ graphene oxide composite paper electrodes with high volumetric capacitance. Nanoscale 7(8), 3418–3423 (2015)

    Article  CAS  Google Scholar 

  76. Wang, Z., Tammela, P., Strømme, M., Nyholm, L.: Cellulose-based supercapacitors: material and performance considerations. Adv. Energy Mater. 7(18), 1700130 (2017)

    Article  Google Scholar 

  77. Wei, G., Zuo, H.F., Guo, Y.R., Pan, Q.J.: Synthesis of ZnO with enhanced photocatalytic activity: a novel approach using nanocellulose. BioResources 11(3), 6244–6253 (2016)

    Article  CAS  Google Scholar 

  78. Willgert, M., Leijonmarck, S., Lindbergh, G., Malmström, E., Johansson, M.: Cellulose nanofibril reinforced composite electrolytes for lithium ion battery applications. J. Mater. Chem. A 2(33), 13556–13564 (2014)

    Article  CAS  Google Scholar 

  79. Wu, J., et al.: Organic solar cells based on cellulose nanopaper from agroforestry residues with an efficiency of over 16% and effectively wide-Angle light capturing. J. Mater. Chem. A 8(11), 5442–5448 (2020)

    Article  CAS  Google Scholar 

  80. Wu, X., Tang, J., Duan, Y., Yu, A., Berry, R.M., Tam, K.C.: Conductive cellulose nanocrystals with high cycling stability for supercapacitor applications. J. Mater. Chem. A 2(45), 19268–19274 (2014)

    Article  CAS  Google Scholar 

  81. Ye, X., Wang, Y., Hopkins, R.C., Adams, M.W., Evans, B.R., Mielenz, J.R., Zhang, Y.H.: Spontaneous high-yield production of hydrogen from cellulosic materials and water catalyzed by enzyme cocktails. ChemSusChem 2(2), 149–152 (2009)

    Article  CAS  Google Scholar 

  82. Yu, D., et al.: Emergence of fiber supercapacitors. Chem. Soc. Rev. 44(3), 647–662 (2015)

    Article  CAS  Google Scholar 

  83. Zagrodnik, R., Seifert, K.: Direct fermentative hydrogen production from cellulose and starch with mesophilic bacterial consortia. Pol. J. Microbiol. 69(1), 109–120 (2020)

    Article  Google Scholar 

  84. Zhang, L.C., Sun, X., Hu, Z., Yuan, C.C., Chen, C.H.: Rice paper as a separator membrane in lithium-ion batteries. J. Power Sources 204, 149–154 (2012)

    Article  CAS  Google Scholar 

  85. Zhang, T., Yang, L., Yan, X., Ding, X.: Recent advances of cellulose-based materials and their promising application in sodium-ion batteries and capacitors. Small 14(47), 1802444 (2018)

    Article  Google Scholar 

  86. Zhao, D., Zhu, Y., Cheng, W., Chen, W., Wu, Y., Yu, H.: Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 33(28), 2000619 (2021)

    Article  CAS  Google Scholar 

  87. Zhou, S., Nyholm, L., Strømme, M., Wang, Z.: Cladophora cellulose: unique biopolymer nanofibrils for emerging energy, cladophora cellulose: unique biopolymer nano fi fibrils for emerging energy, environmental, and life science applications. Acc. Chem. Res 52(8), 2232–2243 (2019)

    Article  CAS  Google Scholar 

  88. Zhou, S., Kong, X., Zheng, B., Huo, F., Strømme, M., Xu, C.: Cellulose nanofiber@ conductive metal–organic frameworks for high-performance flexible supercapacitors. ACS Nano 13(8), 9578–9586 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Adrus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azman, N.A.N.M.N. et al. (2023). Cellulose Morphologies for Energy Applications. In: Shabbir, M. (eds) Regenerated Cellulose and Composites. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-1655-9_8

Download citation

Publish with us

Policies and ethics