Skip to main content

Data Representation and Clustering with Double Low-Rank Constraints

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1791))

Included in the following conference series:

Abstract

High-dimensional data are usually drawn from an union of multiple low-dimensional subspaces. Low-rank representation (LRR), as a multi-subspace structure learning method, uses low rank constraints to extract the low-rank subspace structure of high-dimensional data. However, LRR is highly dependent on the multi-subspace property of the data itself, which is easily disturbed by some higher intensity global noise. Thus, a data representation learning method (UV-LRR) capable of handling both sparse global noise and locally structured sparse noise with dual low-rank constraints on the input data and the representation coefficients is proposed in this paper. The sparse global noise and the local structured noise are constrained by using \(l_1\) and \(l_{2,1}\) norm, respectively, to separate a large amount of noise latent in the data. The UV decomposition and nuclear norm minimization is also used to compress the rank of input data and representation coefficients to extract the multi-subspace structure underlying the observed data. The experimental results show that the proposed method has superior performance in the clustering experiments for each dataset.

This work was supported in part by the Grants of National Key R &D Program of China (2020AAA0108304), National Natural Science Foundation of China (62073088, U1911401).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at http://www.cs.toronto.edu/~roweis/data.html.

References

  1. Wu, Y., Zhang, Z., Huang, T.S., et al.: Multibody grouping via orthogonal subspace decomposition. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 2, p. 2. IEEE (2001)

    Google Scholar 

  2. Ma, Y., Yang, A.Y., Derksen, H., et al.: Estimation of subspace arrangements with applications in modeling and segmenting mixed data. SIAM Rev. 50(3), 413–458 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)

    Article  Google Scholar 

  4. Liu, G., Lin, Z., Yan, S., et al.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2012)

    Article  Google Scholar 

  5. Li, C., Liu, C., Gao, G., et al.: Robust low-rank decomposition of multi-channel feature matrices for fabric defect detection. Multimed. Tools Appl. 78(6), 7321–7339 (2019)

    Article  Google Scholar 

  6. Ding, Y., Chong, Y., Pan, S.: Sparse and low-rank representation with key connectivity for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 13, 5609–5622 (2020)

    Article  Google Scholar 

  7. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdiscip. Rev. Comput. Statist. 2(4), 433–459 (2010)

    Article  Google Scholar 

  8. Ding, C., Zhou, D., He, X., et al.: R 1-PCA: rotational invariant l 1-norm principal component analysis for robust subspace factorization. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 281–288 (2006)

    Google Scholar 

  9. Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (coil-100) (1996)

    Google Scholar 

  10. Hastie, T., Tibshirani, R., Friedman, J.H., et al.: The elements of statistical learning: data mining, inference, and prediction. Springer, New York (2009)

    Google Scholar 

  11. Lu, C.-Y., Min, H., Zhao, Z.-Q., Zhu, L., Huang, D.-S., Yan, S.: Robust and efficient subspace segmentation via least squares regression. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 347–360. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33786-4_26

    Chapter  Google Scholar 

  12. Vidal, R., Favaro, P.: Low rank subspace clustering (LRSC). Pattern Recogn. Lett. 43, 47–61 (2014)

    Article  Google Scholar 

  13. Brbić, M., Kopriva, I.: \(\ell _0 \)-motivated low-rank sparse subspace clustering. IEEE Trans. Cybern. 50(4), 1711–1725 (2018)

    Article  Google Scholar 

  14. Schütze, H., Manning, C.D., Raghavan, P.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  15. Sokolova, M., Japkowicz, N., Szpakowicz, S.: Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. In: Sattar, A., Kang, B. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 1015–1021. Springer, Heidelberg (2006). https://doi.org/10.1007/11941439_114

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongze Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, H., Zeng, D., Ding, C., Wu, Z. (2023). Data Representation and Clustering with Double Low-Rank Constraints. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Communications in Computer and Information Science, vol 1791. Springer, Singapore. https://doi.org/10.1007/978-981-99-1639-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1639-9_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1638-2

  • Online ISBN: 978-981-99-1639-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics