Skip to main content

Nano-antimicrobial Materials: Alternative Antimicrobial Approach

  • Chapter
  • First Online:
Nanomaterials for Sustainable Development

Abstract

The ineffective response of conventional antimicrobial drugs and the rapid spread of drug resistance are major obstructs to the successful management of infectious diseases all over the world. A highly effective antimicrobial approach is urgently needed to replace existing ones. Recent advances in nanobiotechnology and their unique physicochemical properties would be a new hope in the coming years. In this scenario, the excellent antimicrobial efficiency of nanoparticles has received a significant interest across the globe. An improved understanding of nanoparticles following their biological cell linkages would be propitious to develop nano-based antimicrobial services like food sensors, food packaging devices, water purification systems, medical care regimens, etc. The present chapter focuses on the antimicrobial activities of different types of nanomaterials, responsible factors for antimicrobial efficiency, and probable responsible mechanisms. Moreover, this chapter also addresses the major challenges and future perspectives of nanomaterials for their efficient use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Piret J, Boivin G (2021) Pandemics throughout history. Front Microbiol 11:631736

    Article  Google Scholar 

  2. Sofowora A, Ogunbodede E, Onayade A (2013) The role and place of medicinal plants in the strategies for disease prevention. Afr J Tradit Complement Altern Med 10(5):210–229

    Google Scholar 

  3. Barve M, Mashru M, Jagtap C, Patgiri BJ, Prajapati PK (2011) Therapeutic potentials of metals in ancient India: a review through Charaka Samhita. J Ayurveda Integr Med 2(2):55

    Article  Google Scholar 

  4. Fleming A (1929) On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10(3):226

    Google Scholar 

  5. Gould K (2016) Antibiotics: from prehistory to the present day. J Antimicrob Chemother 71(3):572–575

    Article  Google Scholar 

  6. Liesegang TJ (2001) Use of antimicrobials to prevent postoperative infection in patients with cataracts. Curr Opin Ophthalmol 12(1):68–74

    Article  Google Scholar 

  7. Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther 40(4):277

    Google Scholar 

  8. Mohana NC, Mithun PR, Rao HY, Mahendra C, Satish S (2020) Nanoparticle applications in sustainable agriculture, poultry, and food: trends and perspective. In: Nanotoxicity. Elsevier, pp 341–353

    Google Scholar 

  9. Ribeiro da Cunha B, Fonseca LP, Calado CR (2019) Antibiotic discovery: where have we come from, where do we go? Antibiotics 8(2):45

    Google Scholar 

  10. Bloom DE, Cadarette D (2019) Infectious disease threats in the twenty-first century: strengthening the global response. Front Immunol 10:549

    Article  Google Scholar 

  11. Llor C, Bjerrum L (2014) Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Ther Adv Drug Saf 5(6):229–241

    Article  Google Scholar 

  12. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74(3):417–433

    Article  Google Scholar 

  13. Dadgostar P (2019) Antimicrobial resistance: implications and costs. Infect Drug Resist 12:3903

    Article  Google Scholar 

  14. Reygaert WC (2018) An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 4(3):482

    Article  Google Scholar 

  15. Mah TF (2012) Biofilm-specific antibiotic resistance. Future Microbiol 7(9):1061–1072

    Article  Google Scholar 

  16. Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil MA (2018) Bacterial biofilm and associated infections. J Chin Med Assoc 81(1):7–11

    Article  Google Scholar 

  17. Costerton JW, Montanaro L, Arciola CR (2005) Biofilm in implant infections: its production and regulation. Int J Artif Organs 28(11):1062–1068

    Article  Google Scholar 

  18. Gullberg E Selection of resistance at very low antibiotic concentrations. Doctoral dissertation, Acta Universitatis Upsaliensis

    Google Scholar 

  19. Kapoor G, Saigal S, Elongavan A (2017) Action and resistance mechanisms of antibiotics: a guide for clinicians. J Anaesthesiol Clin Pharmacol 33(3):300

    Article  Google Scholar 

  20. Džidić S, Šušković J, Kos B (2008) Antibiotic resistance mechanisms in bacteria: biochemical and genetic aspects. Food Technol Biotechnol 46(1)

    Google Scholar 

  21. Breijyeh Z, Jubeh B, Karaman R (2020) Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules 25(6):1340

    Article  Google Scholar 

  22. World Health Organization (2014) Antimicrobial resistance: global report on surveillance. World Health Organization

    Google Scholar 

  23. Ukuhor HO (2021) The interrelationships between antimicrobial resistance, COVID-19, past, and future pandemics. J Infect Public Health 14(1):53–60

    Article  Google Scholar 

  24. Butler MS, Blaskovich MA, Cooper MA (2013) Antibiotics in the clinical pipeline in 2013. J Antibiot 66(10):571–591

    Article  Google Scholar 

  25. Fair RJ, Tor Y (2014) Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem 6:PMC-S14459

    Google Scholar 

  26. León-Buitimea A, Garza-Cervantes JA, Gallegos-Alvarado DY, Osorio-Concepción M, Morones-Ramírez JR (2021) Nanomaterial-based antifungal therapies to combat fungal diseases aspergillosis, Coccidioidomycosis, Mucormycosis, and candidiasis. Pathogens 10(10):1303

    Article  Google Scholar 

  27. Castillo HA, Castellanos LN, Chamorro RM, Martínez RR, Borunda EO (2018) Nanoparticles as new therapeutic agents against Candida albicans. Candida Albicans

    Google Scholar 

  28. Sharma RP, Raut SD, Jadhav VV, Kadam AS, Mane RS (2019) Anti-candida and anti-adhesion efficiencies of zinc ferrite nanoparticles. Mater Lett 237:165–167

    Article  Google Scholar 

  29. Hata M, Ishii Y, Watanabe E, Uoto K, Kobayashi S, Yoshida KI, Otani T, Ando A (2010) Inhibition of ergosterol synthesis by novel antifungal compounds targeting C-14 reductase. Med Mycol 48(4):613–621

    Article  Google Scholar 

  30. Feretzakis G, Loupelis E, Sakagianni A, Skarmoutsou N, Michelidou S, Velentza A, Martsoukou M, Valakis K, Petropoulou S, Koutalas E (2019) A 2-year single-centre audit on antibiotic resistance of Pseudomonas aeruginosa, Acinetobacterbaumannii and Klebsiellapneumoniae strains from an intensive care unit and other wards in a general public hospital in Greece. Antibiotics 8(2):62

    Article  Google Scholar 

  31. Nguyen T, Roddick FA, Fan L (2012) Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures. Membranes 2(4):804–840

    Article  Google Scholar 

  32. Baltz RH (2005) Antibiotic discovery from actinomycetes: will a renaissance follow the decline and fall? Sim News 55:186–196

    Google Scholar 

  33. Silver LL (2011) Challenges of antibacterial discovery. Clin Microbiol Rev 24(1):71–109

    Article  MathSciNet  Google Scholar 

  34. Livermore DM (2011) British society for antimicrobial chemotherapy working party on the urgent need: regenerating antibacterial drug discovery and development. Discovery research: the scientific challenge of finding new antibiotics. J Antimicrob Chemother 66(9):1941–1944

    Google Scholar 

  35. Coates AR, Halls G, Hu Y (2011) Novel classes of antibiotics or more of the same? Br J Pharmacol 163(1):184–194

    Article  Google Scholar 

  36. Baltz RH (2007) Antimicrobials from Actinomycetas: back to the future. Mecrobe 2:125–133

    Google Scholar 

  37. Durmaz AA, Karaca E, Demkow U, Toruner G, Schoumans J, Cogulu O (2015) Evolution of genetic techniques: past, present, and beyond. Biomed Res Int 2015

    Google Scholar 

  38. Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discovery 6(1):29–40

    Article  Google Scholar 

  39. Brötz-Oesterhelt H, Sass P (2010) Postgenomic strategies in antibacterial drug discovery. Future Microbiol 5(10):1553–1579

    Article  Google Scholar 

  40. Davies J (2006) Where have all the antibiotics gone? Can J Infect Dis Med Microbiol 17(5):287–290

    Article  Google Scholar 

  41. Jacoby G, Bush K (2005) β‐lactam resistance in the 21st century. Front Antimicrob Resist Tribute Stuart B Levy 53–65

    Google Scholar 

  42. Uskokovic V (2013) Entering the era of nanoscience: time to be so small. J Biomed Nanotechnol 9(9):1441–1470

    Article  Google Scholar 

  43. ISO, ISO/TS 80004–1 (2015) Nanotechnologies—vocabulary—part 1: core terms

    Google Scholar 

  44. Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2(1):1–6

    Article  Google Scholar 

  45. Aithal PS, Aithal S (2016) Business strategy for nanotechnology based products and services. Int J Manag Sci Bus Res 5(4):139–149

    Google Scholar 

  46. Bradford KC (1962) Inventor. Food package. United States patent US 3,054,679

    Google Scholar 

  47. Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35(7):583–592

    Article  Google Scholar 

  48. Radad K, Al-Shraim M, Moldzio R, Rausch WD (2012) Recent advances in benefits and hazards of engineered nanoparticles. Environ Toxicol Pharmacol 34(3):661–672

    Article  Google Scholar 

  49. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35(3):209–217

    Article  Google Scholar 

  50. Srinivasan S, Kannan AM, Kothurkar N, Khalil Y, Kuravi S (2015) Nanomaterials for energy and environmental applications. J Nanomater 2015

    Google Scholar 

  51. Saallah S, Lenggoro IW (2018) Nanoparticles carrying biological molecules: recent advances and applications. Kona Powder Part J 35:89–111

    Article  Google Scholar 

  52. Zhou C, Wang M, Zou K, Chen J, Zhu Y, Du J (2013) Antibacterial polypeptide-grafted chitosan-based nanocapsules as an “armed” carrier of anticancer and antiepileptic drugs. ACS Macro Lett 2(11):1021–1025

    Article  Google Scholar 

  53. Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, Balogh LP, Ballerini L, Bestetti A, Brendel C, Bosi S (2017) Diverse applications of nanomedicine. ACS Nano 11(3):2313–2381

    Article  Google Scholar 

  54. Varshney R, Bhadauria S, Gaur MS (2012) A review: biological synthesis of silver and copper nanoparticles. Nano Biomed Eng 4(2)

    Google Scholar 

  55. Hobman JL, Crossman LC (2015) Bacterial antimicrobial metal ion resistance. J Med Microbiol 64(5):471–497

    Article  Google Scholar 

  56. Grass G, Rensing C, Solioz M (2011) Metallic copper as an antimicrobial surface. Appl Environ Microbiol 77(5):1541–1547

    Article  Google Scholar 

  57. Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7(1):17–28

    Article  Google Scholar 

  58. Alexander JW (2009) History of the medical use of silver. Surg Infect 10(3):289–292

    Article  Google Scholar 

  59. Glišić BĐ, Djuran MI (2014) Gold complexes as antimicrobial agents: an overview of different biological activities about the oxidation state of the gold ion and the ligand structure. Dalton Trans 43(16):5950–5969

    Article  Google Scholar 

  60. Grumezescu A (ed) (2016) Nanobiomaterials in antimicrobial therapy: applications of nanobiomaterials. William Andrew

    Google Scholar 

  61. Hill WR, Pillsbury DM (1939) Argyria: the pharmacology of silver. Williams & Wilkins

    Google Scholar 

  62. Sim W, Barnard RT, Blaskovich MA, Ziora ZM (2018) Antimicrobial silver in medicinal and consumer applications: a patent review of the past decade (2007–2017). Antibiotics 7(4):93

    Article  Google Scholar 

  63. Sharma R, Prajapati PK (2016) Nanotechnology in medicine: leads from Ayurveda. J Pharm Bioallied Sci 8(1):80–81

    Article  Google Scholar 

  64. Kaviratna AC, Sharma P The Charaka Samhita. Indian medical science series, vol 5

    Google Scholar 

  65. Pal D, Sahu CK, Haldar A (2014) Bhasma: the ancient Indian nanomedicine. J Adv Pharm Technol Res 5(1):4

    Article  Google Scholar 

  66. Goyal RK (2017) Nanomaterials and nanocomposites: synthesis, properties, characterization techniques, and applications. CRC Press

    Google Scholar 

  67. Hemeg HA (2017) Nanomaterials for alternative antibacterial therapy. Int J Nanomed 12:8211

    Article  Google Scholar 

  68. Senthilkumar SR, Sivakumar T (2014) Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities. Int J Pharm Pharm Sci 6(6):461–465

    Google Scholar 

  69. Yaqoob AA, Ahmad H, Parveen T, Ahmad A, Oves M, Ismail IM, Qari HA, Umar K, Mohamad Ibrahim MN (2020) Recent advances in metal decorated nanomaterials and their various biological applications: a review. Front Chem 19(8):341

    Article  Google Scholar 

  70. Li R, Chen T, Pan X (2021) Metal–organic-framework-based materials for antimicrobial applications. ACS Nano 15(3):3808–3848

    Article  Google Scholar 

  71. Mohammed Fayaz A, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R (2009) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 57(14):6246–6252

    Article  Google Scholar 

  72. Penders J, Stolzoff M, Hickey DJ, Andersson M, Webster TJ (2017) Shape-dependent antibacterial effects of non-cytotoxic gold nanoparticles. Int J Nanomed 12:2457

    Article  Google Scholar 

  73. Chmielewska SJ, Skłodowski K, Depciuch J, Deptuła P, Piktel E, Fiedoruk K, Kot P, Paprocka P, Fortunka K, Wollny T, Wolak P (2021) Bactericidal properties of rod-, peanut-, and star-shaped gold nanoparticles coated with ceragenin CSA-131 against multidrug-resistant bacterial strains. Pharmaceutics 13(3):425

    Article  Google Scholar 

  74. Russo T, Gloria A, De Santis R, D’Amora U, Balato G, Vollaro A, Oliviero O, Improta G, Triassi M, Ambrosio L (2017) Preliminary focus on the mechanical and antibacterial activity of a PMMA-based bone cement loaded with gold nanoparticles. Bioact Mater 2(3):156–161

    Article  Google Scholar 

  75. Ma X, Zhou S, Xu X, Du Q (2022) Copper-containing nanoparticles: mechanism of antimicrobial effect and application in dentistry-a narrative review. Front Surg 9

    Google Scholar 

  76. Ashfaq A, Khursheed N, Fatima S, Anjum Z, Younis K (2022) Application of nanotechnology in food packaging: Pros and Cons. J Agric Food Res 7:100270

    Google Scholar 

  77. Lu H, Wang J, Stoller M, Wang T, Bao Y, Hao H (2016) An overview of nanomaterials for water and wastewater treatment. Adv Mater Sci Eng 2016

    Google Scholar 

  78. Galić E, Ilić K, Hartl S, Tetyczka C, Kasemets K, Kurvet I, Milić M, Barbir R, Pem B, Erceg I, Sikirić MD (2020) Impact of surface functionalization on the toxicity and antimicrobial effects of selenium nanoparticles considering different routes of entry. Food Chem Toxicol 144:111621

    Article  Google Scholar 

  79. Deplanche K, Caldelari I, Mikheenko IP, Sargent F, Macaskie LE (2010) Involvement of hydrogenases in the formation of highly catalytic Pd (0) nanoparticles by bioreduction of Pd (II) using Escherichia coli mutant strains. Microbiology 156(9):2630–2640

    Article  Google Scholar 

  80. Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15(1):1–20

    Article  Google Scholar 

  81. Sánchez-López E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, Cano A, Espina M, Ettcheto M, Camins A, Silva AM (2020) Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials 10(2):292

    Article  Google Scholar 

  82. Shalaby MA, Anwar MM, Saeed H (2022) Nanomaterials for application in wound healing: current state-of-the-art and future perspectives. J Polym Res 29(3):1–37

    Article  Google Scholar 

  83. Pati R, Mehta RK, Mohanty S, Padhi A, Sengupta M, Vaseeharan B, Goswami C, Sonawane A (2014) Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomed Nanotechnol Biol Med 10(6):1195–1208

    Google Scholar 

  84. Baranowska-Wójcik E, Szwajgier D, Oleszczuk P, Winiarska-Mieczan A (2020) Effects of titanium dioxide nanoparticles exposure on human health—a review. Biol Trace Elem Res 193(1):118–129

    Article  Google Scholar 

  85. Juan L, Zhimin Z, Anchun M, Lei L, Jingchao Z (2010) Deposition of silver nanoparticles on titanium surface for antibacterial effect. Int J Nanomed 5:261

    Article  Google Scholar 

  86. Lasocki S, Gaillard T, Rineau E (2014) Iron is essential for living! Crit Care 18(6):1–2

    Article  Google Scholar 

  87. Kőrösi L, Rodio M, Dömötör D, Kovács T, Papp S, Diaspro A, Intartaglia R, Beke S (2016) Ultrasmall, ligand-free Ag nanoparticles with high antibacterial activity prepared by pulsed laser ablation in liquid. J Chem 2016

    Google Scholar 

  88. Domingues MM, Silva PM, Franquelim HG, Carvalho FA, Castanho MA, Santos NC (2014) Antimicrobial protein rBPI21-induced surface changes on Gram-negative and Gram-positive bacteria. Nanomedicine: Nanotechnol Biol Med 10(3):543–551

    Google Scholar 

  89. Arakha M, Saleem M, Mallick BC, Jha S (2015) The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Sci Rep 5(1):1

    Article  Google Scholar 

  90. Tamames-Tabar C, Cunha D, Imbuluzqueta E, Ragon F, Serre C, Blanco-Prieto MJ, Horcajada P (2014) Cytotoxicity of nanoscaled metal–organic frameworks. J Mater Chem B 2(3):262–271

    Article  Google Scholar 

  91. Tamames-Tabar C, Imbuluzqueta E, Guillou N, Serre C, Miller SR, Elkaïm E, Horcajada P, Blanco-Prieto MJ (2015) A Zn azelate MOF: combining antibacterial effect. CrystEngComm 17(2):456–462

    Article  Google Scholar 

  92. Lu X, Ye J, Zhang D, Xie R, Bogale RF, Sun Y, Zhao L, Zhao Q, Ning G (2014) Silver carboxylate metal–organic frameworks with highly antibacterial activity and biocompatibility. J Inorg Biochem 138:114–121

    Article  Google Scholar 

  93. Wyszogrodzka G, Marszałek B, Gil B, Dorożyński P (2016) Metal-organic frameworks: mechanisms of antibacterial action and potential applications. Drug Discov Today 21(6):1009–1018

    Article  Google Scholar 

  94. Li P, Li J, Feng X, Li J, Hao Y, Zhang J, Wang H, Yin A, Zhou J, Ma X, Wang B (2019) Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning. Nat Commun 10(1):1

    Google Scholar 

  95. Kumar P, Huo P, Zhang R, Liu B (2019) Antibacterial properties of graphene-based nanomaterials. Nanomaterials 9(5):737

    Article  Google Scholar 

  96. Sharma RP, Raut SD, Mulani RM, Kadam AS, Mane RS (2019) Sol–gel auto-combustion mediated cobalt ferrite nanoparticles: a potential material for antimicrobial applications. Int Nano Lett 9(2):141–147

    Article  Google Scholar 

  97. Sharma RP, Raut SD, Kadam AS, Mulani RM, Mane RS (2020) In-vitro antibacterial and anti-biofilm efficiencies of chitosan-encapsulated zinc ferrite nanoparticles. Appl Phys A 126(10):1–9

    Article  Google Scholar 

  98. Sharma RP, Raut SD, Jadhav VV, Mulani RM, Kadam AS, Mane RS (2022) Assessment of antibacterial and anti-biofilm effects of zinc ferrite nanoparticles against Klebsiella pneumoniae. Folia Microbiol 1–9

    Google Scholar 

  99. Liu YJ, He LL, Mustapha A, Li H, Hu ZQ, Lin MS (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. J Appl Microbiol 107(4):1193–1201

    Article  Google Scholar 

  100. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346

    Article  Google Scholar 

  101. Saeb A, Alshammari AS, Al-Brahim H, Al-Rubeaan KA (2014) Production of silver nanoparticles with strong and stable antimicrobial activity against highly pathogenic and multidrug resistant bacteria. Sci World J 2014

    Google Scholar 

  102. Lee WS, Park YS, Cho YK (2015) Significantly enhanced antibacterial activity of TiO2 nanofibers with hierarchical nanostructures and controlled crystallinity. Analyst 140(2):616–622

    Article  Google Scholar 

  103. Saliani M, Jalal R, Goharshadi EK (2015) Effects of pH and temperature on antibacterial activity of zinc oxide nanofluid against Escherichia coli O157: H7 and Staphylococcus aureus. Jundishapur J Microbiol 8(2)

    Google Scholar 

  104. Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1831

    Article  Google Scholar 

  105. Yacamán MJ, Ascencio JA, Liu HB, Gardea-Torresdey J (2001) Structure shape and stability of nanometric sized particles. J Vac Sci Technol B: Microelectron Nanometer Struct Process Measur Phenom 19(4):1091–1103

    Article  Google Scholar 

  106. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle–cell interactions. Small 6(1):12–21

    Google Scholar 

  107. Durán N, Durán M, De Jesus MB, Seabra AB, Fávaro WJ, Nakazato G (2016) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomed: Nanotechnol Biol Med 12(3):789–799

    Google Scholar 

  108. Wani IA, Ahmad T (2013) Size and shape dependant antifungal activity of gold nanoparticles: a case study of Candida. Colloids Surf, B 101:162–170

    Article  Google Scholar 

  109. Huang T, Holden JA, Reynolds EC, Heath DE, O’Brien-Simpson NM, O’Connor AJ (2020) Multifunctional antimicrobial polypeptide-selenium nanoparticles combat drug-resistant bacteria. ACS Appl Mater Interfaces 12(50):55696–55709

    Article  Google Scholar 

  110. Shakibaie M, Forootanfar H, Golkari Y, Mohammadi-Khorsand T, Shakibaie MR (2015) Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J Trace Elem Med Biol 29:235–241

    Article  Google Scholar 

  111. Ermini ML, Voliani V (2021) Antimicrobial nano-agents: the copper age. ACS Nano 15(4):6008–6029

    Article  Google Scholar 

  112. Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A (2012) Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomed 7:6003

    Article  Google Scholar 

  113. Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA (2012) Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett 15(71):114–116

    Article  Google Scholar 

  114. Bai B, Saranya S, Dheepaasri V, Muniasamy S, Alharbi NS, Selvaraj B, Undal VS, Gnanamangai BM (2022) Biosynthesized copper oxide nanoparticles (CuO NPs) enhances the anti-biofilm efficacy against K. pneumoniae and S. aureus. J King Saud Univ Sci 102120

    Google Scholar 

  115. Sani A, Cao C, Cui D (2021) Toxicity of gold nanoparticles (AuNPs): a review. Biochem Biophys Rep 26:100991

    Google Scholar 

  116. Liu K, He Z, Byrne HJ, Curtin JF, Tian F (2018) Investigating the role of gold nanoparticle shape and size in their toxicities to fungi. Int J Environ Res Public Health 15(5):998

    Article  Google Scholar 

  117. Li J, Xie S, Ahmed S, Wang F, Gu Y, Zhang C, Chai X, Wu Y, Cai J, Cheng G (2017) Antimicrobial activity and resistance: influencing factors. Front Pharmacol 8:364

    Article  Google Scholar 

  118. Kladko DV, Falchevskaya AS, Serov NS, Prilepskii AY (2021) Nanomaterial shape influence on cell behavior. Int J Mol Sci 22(10):5266

    Article  Google Scholar 

  119. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720

    Article  Google Scholar 

  120. Chattopadhyay I (2020) Application of nanoparticles in drug delivery. In: Model organisms to study biological activities and toxicity of nanoparticles. pp 35–57

    Google Scholar 

  121. Cheon JY, Kim SJ, Rhee YH, Kwon OH, Park WH (2019) Shape-dependent antimicrobial activities of silver nanoparticles. Int J Nanomed 14:2773

    Article  Google Scholar 

  122. Woźniak A, Malankowska A, Nowaczyk G, Grześkowiak BF, Tuśnio K, Słomski R, Zaleska-Medynska A, Jurga S (2017) Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. J Mater Sci—Mater Med 28(6):1

    Article  Google Scholar 

  123. Sirelkhatim A, Mahmud S, Seeni A, Kaus NH, Ann LC, Bakhori SK, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro Lett 7(3):219–242

    Article  Google Scholar 

  124. Talebian N, Amininezhad SM, Doudi M (2013) Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J Photochem Photobiol, B 120:66–73

    Article  Google Scholar 

  125. Ramani M, Ponnusamy S, Muthamizhchelvan C (2012) From zinc oxide nanoparticles to microflowers: a study of growth kinetics and biocidal activity. Mater Sci Eng, C 32(8):2381–2389

    Article  Google Scholar 

  126. Ma J, Liu J, Bao Y, Zhu Z, Wang X, Zhang J (2013) Synthesis of large-scale uniform mulberry-like ZnO particles with microwave hydrothermal method and its antibacterial property. Ceram Int 39(3):2803–2810

    Article  Google Scholar 

  127. Cha SH, Hong J, McGuffie M, Yeom B, VanEpps JS, Kotov NA (2015) Shape-dependent biomimetic inhibition of enzyme by nanoparticles and their antibacterial activity. ACS Nano 9(9):9097–9105

    Article  Google Scholar 

  128. de Dicastillo CL, Correa MG, Martínez FB, Streitt C, Galotto MJ (2020) Antimicrobial effect of titanium dioxide nanoparticles. Antimicrob Resist—One Health Perspect

    Google Scholar 

  129. Zhang Q, Yan X, Shao R, Dai H, Li S (2014) Preparation of nano-TiO2 by liquid hydrolysis and characterization of its antibacterial activity. J Wuhan Univ Technol—Mater Sci Ed 29(2):407–409

    Google Scholar 

  130. Vimbela GV, Ngo SM, Fraze C, Yang L, Stout DA (2017) Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomed 12:3941

    Article  Google Scholar 

  131. Ambika S, Sundrarajan M (2016) [EMIM] BF4 ionic liquid-mediated synthesis of TiO2 nanoparticles using Vitex negundo Linn extract and its antibacterial activity. J Mol Liq 221:986–992

    Article  Google Scholar 

  132. López de Dicastillo C, Patiño C, Galotto MJ, Palma JL, Alburquenque D, Escrig J (2018) Novel antimicrobial titanium dioxide nanotubes obtained through a combination of atomic layer deposition and electrospinning technologies. Nanomaterials 8(2):128

    Google Scholar 

  133. Sundrarajan M, Bama K, Bhavani M, Jegatheeswaran S, Ambika S, Sangili A, Nithya P, Sumathi R (2017) Obtaining titanium dioxide nanoparticles with spherical shape and antimicrobial properties using M. citrifolia leaves extract by hydrothermal method. J Photochem Photobiol B 171:117–124

    Google Scholar 

  134. Thakur BK, Kumar A, Kumar D (2019) Green synthesis of titanium dioxide nanoparticles using Azadirachtaindica leaf extract and evaluation of their antibacterial activity. S Afr J Bot 124:223–227

    Article  Google Scholar 

  135. Haghighi F, ShR M, Mohammadi P, Eskandari M, Hosseinkhani S (2012) The evaluation of Candida albicans biofilms formation on silicone catheter, PVC and glass coated with titanium dioxide nanoparticles by XTT method and ATPase assay. Bratisl Lek Listy 113(12):707–711

    Google Scholar 

  136. Trchounian A, Gabrielyan L, Mnatsakanyan N (2018) Nanoparticles of various transition metals and their applications as antimicrobial agents. In: Saylor Y, Irby V (eds) Metal nanoparticles: properties, synthesis and applications. pp 161–211

    Google Scholar 

  137. Bhuiyan MH, Saidur R, Amalina MA, Mostafizur RM, Islam AK (2015) Effect of nanoparticles concentration and their sizes on surface tension of nanofluids. Procedia Eng 105:431–437

    Article  Google Scholar 

  138. Kose N, Caylak R, Pekşen C, Kiremitçi A, Burukoglu D, Koparal S, Doğan A (2016) Silver ion doped ceramic nano-powder coated nails prevent infection in open fractures: in vivo study. Injury 47(2):320–324

    Article  Google Scholar 

  139. Ramalingam B, Parandhaman T, Das SK (2016) Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl Mater Interfaces 8(7):4963–4976

    Google Scholar 

  140. Shaikh S, Nazam N, Rizvi SM, Ahmad K, Baig MH, Lee EJ, Choi I (2019) Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int J Mol Sci 20(10):2468

    Article  Google Scholar 

  141. Dong Y, Zhu H, Shen Y, Zhang W, Zhang L (2019) Antibacterial activity of silver nanoparticles of different particle size against Vibrio Natriegens. PLoS ONE 14(9):e0222322

    Article  Google Scholar 

  142. Sharma S, Kumar K, Thakur N, Chauhan S, Chauhan MS (2020) The effect of shape and size of ZnO nanoparticles on their antimicrobial and photocatalytic activities: a green approach. Bull Mater Sci 43(1):1

    Article  Google Scholar 

  143. Elkady MF, Shokry Hassan H, Hafez EE, Fouad A (2015) Construction of zinc oxide into different morphological structures to be utilized as antimicrobial agent against multidrug resistant bacteria. Bioinorg Chem Appl 2015

    Google Scholar 

  144. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK (2007) Antimicrobial effects of silver nanoparticles. Nanomed: Nanotechnol Biol Med 3(1):95–101

    Google Scholar 

  145. El-Deeb B, Al-Talhi A, Mostafa N, Abou-assy R (2018) Biological synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial properties. Am Acad Sci Res J Eng Technol Sci 45(1):135–170

    Google Scholar 

  146. Lkhagvajav N, Yasa I, Celik E, Koizhaiganova M, Sari O (2011) Antimicrobial activity of colloidal silver nanoparticles prepared by sol-gel method. Dig J Nanomater Biostruct 6(1):149–154

    Google Scholar 

  147. Margabandhu M, Sendhilnathan S, Maragathavalli S, Karthikeyan V, Annadurai B (2015) Synthesis characterization and antibacterial activity of iron oxide nanoparticles. Glob J Bio Sci Biotechnol 4(4):335–341

    Google Scholar 

  148. Gurunathan S, Han JW, Kwon DN, Kim JH (2014) Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res Lett 9(1):1–7

    Article  Google Scholar 

  149. Nehra P, Chauhan RP, Garg N, Verma K (2018) Antibacterial and antifungal activity of chitosan coated iron oxide nanoparticles. Br J Biomed Sci 75(1):13–18

    Article  Google Scholar 

  150. Maillard AP, Espeche JC, Maturana P, Cutro AC, Hollmann A (2021) Zeta potential beyond materials science: applications to bacterial systems and the development of novel antimicrobials. Biochim Biophys Acta (BBA)-Biomembr 1863(6):183597

    Google Scholar 

  151. Karmakar SA (2019) Particle size distribution and zeta potential based on dynamic light scattering: techniques to characterise stability and surface distribution of charged colloids particle. Recent Trends Mater Phys Chem 117–159

    Google Scholar 

  152. Jastrzębska AM, Kurtycz P, Olszyna A, Karwowska E, Miaśkiewicz-Pęska E, Załęska-Radziwiłł M, Doskocz N, Basiak D (2015) The impact of Zeta potential and physicochemical properties of TiO2-based nanocomposites on their biological activity. Int J Appl Ceram Technol 12(6):1157–1173

    Article  Google Scholar 

  153. Clogston JD, Patri AK (2011) Zeta potential measurement. In: Characterization of nanoparticles intended for drug delivery. Humana Press, pp 63–70

    Google Scholar 

  154. Tsuchido T, Katsui N, Takeuchi A, Takano M, Shibasaki I (1985) Destruction of the outer membrane permeability barrier of Escherichia coli by heat treatment. Appl Environ Microbiol 50(2):298–303

    Article  Google Scholar 

  155. Halder S, Yadav KK, Sarkar R, Mukherjee S, Saha P, Haldar S, Karmakar S, Sen T (2015) Alteration of Zeta potential and membrane permeability in bacteria: a study with cationic agents. Springerplus 4(1):1–4

    Article  Google Scholar 

  156. Torcato IM, Huang YH, Franquelim HG, Gaspar DD, Craik DJ, Castanho MA, Henriques ST (2013) The antimicrobial activity of Sub3 is dependent on membrane binding and cell-penetrating ability. ChemBioChem 14(15):2013–2022

    Article  Google Scholar 

  157. Abbaszadegan A, Ghahramani Y, Gholami A, Hemmateenejad B, Dorostkar S, Nabavizadeh M, Sharghi H (2015) The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. J Nanomater 2015

    Google Scholar 

  158. Verma A, Arshad F, Ahmad K, Goswami U, Samanta SK, Sahoo AK, Sk MP (2019) Role of surface charge in enhancing antibacterial activity of fluorescent carbon dots. Nanotechnology 31(9):095101

    Article  Google Scholar 

  159. Van Bambeke F, Mingeot-Leclercq MP, Struelens MJ, Tulkens PM (2008) The bacterial envelope as a target for novel anti-MRSA antibiotics. Trends Pharmacol Sci 29(3):124–134

    Article  Google Scholar 

  160. Arakha M, Pal S, Samantarrai D, Panigrahi TK, Mallick BC, Pramanik K, Mallick B, Jha S (2015) Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci Rep 5(1):1–2

    Article  Google Scholar 

  161. Samuel MS, Ravikumar M, John JA, Selvarajan E, Patel H, Chander PS, Soundarya J, Vuppala S, Balaji R, Chandrasekar N (2022) A review on green synthesis of nanoparticles and their diverse biomedical and environmental applications. Catalysts 12(5):459

    Article  Google Scholar 

  162. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385

    Google Scholar 

  163. Begum NA, Mondal S, Basu S, Laskar RA, Mandal D (2009) Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts. Colloids Surf, B 71(1):113–118

    Article  Google Scholar 

  164. Sripriya J, Anandhakumar S, Achiraman S, Antony JJ, Siva D, Raichur AM (2013) Laser receptive polyelectrolyte thin films doped with biosynthesized silver nanoparticles for antibacterial coatings and drug delivery applications. Int J Pharm 457(1):206–213

    Article  Google Scholar 

  165. Kumar V, Wadhwa R, Kumar N, Maurya PK (2019) A comparative study of chemically synthesized and Camellia sinensis leaf extract-mediated silver nanoparticles. 3 Biotech 9(1):1–9

    Google Scholar 

  166. Varun S, Daniel SK, Gorthi SS (2017) Rapid sensing of melamine in milk by interference green synthesis of silver nanoparticles. Mater Sci Eng, C 74:253–258

    Article  Google Scholar 

  167. Jardón-Romero EA, Lara-Carrillo E, González-Pedroza MG, Sánchez-Mendieta V, Salmerón-Valdés EN, Toral-Rizo VH, Olea-Mejía OF, López-González S, Morales-Luckie RA (2022) Antimicrobial activity of biogenic silver nanoparticles from syzygiumaromaticum against the five most common microorganisms in the oral cavity. Antibiotics 11(7):834

    Article  Google Scholar 

  168. Syed A, Ahmad A (2013) Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity. Spectrochim Acta Part A 106:41–47

    Article  Google Scholar 

  169. Paralikar P, Rai M (2018) Bio-inspired synthesis of sulphur nanoparticles using leaf extract of four medicinal plants with special reference to their antibacterial activity. IET Nanobiotechnol 12(1):25–31

    Article  Google Scholar 

  170. Kora AJ, Sashidhar RB (2015) Antibacterial activity of biogenic silver nanoparticles synthesized with gum ghatti and gum olibanum: a comparative study. J Antibiot 68(2):88–97

    Article  Google Scholar 

  171. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74(7):2171–2178

    Article  Google Scholar 

  172. Rosli NA, Teow YH, Mahmoudi E (2021) Current approaches for the exploration of antimicrobial activities of nanoparticles. Sci Technol Adv Mater 22(1):885–907

    Article  Google Scholar 

  173. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227

    Article  Google Scholar 

  174. Jamdagni P, Sidhu PK, Khatri P, Nehra K, Rana JS (2018) Metallic nanoparticles: potential antimicrobial and therapeutic agents. In: Advances in animal biotechnology and its applications. Springer, Singapore, pp 143–160

    Google Scholar 

  175. Mendes CR, Dilarri G, Forsan CF, Sapata VD, Lopes PR, de Moraes PB, Montagnolli RN, Ferreira H, Bidoia ED (2022) Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Sci Rep 12(1):1

    Article  Google Scholar 

  176. Rajawat S, Qureshi MS (2012) Comparative study on bactericidal effect of silver nanoparticles, synthesized using green technology, in combination with antibiotics on Salmonella typhi. J Biomater Nanobiotechnol 3(4):480

    Article  Google Scholar 

  177. Bahrami A, Delshadi R, Jafari SM (2020) Active delivery of antimicrobial nanoparticles into microbial cells through surface functionalization strategies. Trends Food Sci Technol 99:217–228

    Article  Google Scholar 

  178. Lake P, Drake R (2014) Information systems management in the big data era. Springer International Publishing

    Google Scholar 

  179. Sarwar A, Katas H, Samsudin SN, Zin NM (2015) Regioselective sequential modification of chitosan via azide-alkyne click reaction: synthesis, characterization, and antimicrobial activity of chitosan derivatives and nanoparticles. PLoS ONE 10(4):e0123084

    Article  Google Scholar 

  180. Correa MG, Martínez FB, Vidal CP, Streitt C, Escrig J, de Dicastillo CL (2020) Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action. Beilstein J Nanotechnol 11(1):1450–1469

    Article  Google Scholar 

  181. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182

    Google Scholar 

  182. Zhang H, Li Z, Dai C, Wang P, Fan S, Yu B, Qu Y (2021) Antibacterial properties and mechanism of selenium nanoparticles synthesized by Providencia sp DCX. Environ Res 194:110630

    Article  Google Scholar 

  183. Jana NR, Earhart C, Ying JY (2007) Synthesis of water-soluble and functionalized nanoparticles by silica coating. Chem Mater 19(21):5074–5082

    Article  Google Scholar 

  184. Swaminathan M, Sharma NK (2019) Antimicrobial activity of the engineered nanoparticles used as coating agents. In: Handbook of ecomaterials. Springer International Publishing. pp 549–63

    Google Scholar 

  185. Ozdal M, Gurkok S (2022) Recent advances in nanoparticles as antibacterial agent. ADMET DMPK 10(2):115–129

    Google Scholar 

  186. Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33(6):587–590

    Article  Google Scholar 

  187. Chatzimitakos TG, Stalikas CD (2016) Qualitative alterations of bacterial metabolome after exposure to metal nanoparticles with bactericidal properties: a comprehensive workflow based on 1H NMR, UHPLC-HRMS, and metabolic databases. J Proteome Res 15(9):3322–3330

    Article  Google Scholar 

  188. Tang S, Zheng J (2018) Antibacterial activity of silver nanoparticles: structural effects. Adv Healthcare Mater 7(13):1701503

    Article  Google Scholar 

  189. Mukha IP, Eremenko AM, Smirnova NP, Mikhienkova AI, Korchak GI, Gorchev VF, Chunikhin AY (2013) Antimicrobial activity of stable silver nanoparticles of a certain size. Appl Biochem Microbiol 49(2):199–206

    Article  Google Scholar 

  190. Soni D, Bafana A, Gandhi D, Sivanesan S, Pandey RA (2014) Stress response of Pseudomonas species to silver nanoparticles at the molecular level. Environ Toxicol Chem 33(9):2126–2132

    Article  Google Scholar 

  191. Qi K, Cheng B, Yu J, Ho W (2017) Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J Alloy Compd 727:792–820

    Article  Google Scholar 

  192. Gudkov SV, Burmistrov DE, Serov DA, Rebezov MB, Semenova AA, Lisitsyn AB (2021) Do iron oxide nanoparticles have significant antibacterial properties? Antibiotics 10(7):884

    Article  Google Scholar 

  193. Yang M, Zhang J, Wei Y, Zhang J, Tao C (2022) Recent advances in metal-organic framework-based materials for anti-staphylococcus aureus infection. Nano Res 1–23

    Google Scholar 

  194. Khezerlou A, Alizadeh-Sani M, Azizi-Lalabadi M, Ehsani A (2018) Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb Pathog 123:505–526

    Article  Google Scholar 

  195. Abdussalam-Mohammed W (2020) Comparison of chemical and biological properties of metal nanoparticles (Au, Ag), with metal oxide nanoparticles (ZnO-NPs) and their applications. Adv J Chem Sect A 3(2):111–236

    Google Scholar 

  196. Sawai J, Kawada E, Kanou F, Igarashi H, Hashimoto A, Kokugan T, Shimizu M (1996) Detection of active oxygen generated from ceramic powders having antibacterial activity. J Chem Eng Jpn 29(4):627–633

    Article  Google Scholar 

  197. Zhu X, Pathakoti K, Hwang HM (2019) Green synthesis of titanium dioxide and zinc oxide nanoparticles and their usage for antimicrobial applications and environmental remediation. In: Green synthesis, characterization and applications of nanoparticles. Elsevier, pp 223–263

    Google Scholar 

  198. Sharma RK, Ghose R (2015) Synthesis and characterization of nanocrystalline zinc ferrite spinel powders by homogeneous precipitation method. Ceram Int 41(10):14684–14691

    Article  Google Scholar 

  199. Lee SH, Yun JW, Lee JH, Jung YH, Lee DH (2021) Trends in recent waterborne and foodborne disease outbreaks in South Korea, 2015–2019. Osong Public Health Res Perspect 12(2):73

    Article  Google Scholar 

  200. Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, Opsteegh M, Langelaar M, Threfall J, Scheutz F, van der Giessen J (2010) Food-borne diseases—the challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol 30(139):S3-15

    Article  Google Scholar 

  201. Sekhon BS (2010) Food nanotechnology–an overview. Nanotechnol Sci Appl 3:1

    Google Scholar 

  202. Cerqueira MA, Lagaron JM, Castro LM, de Oliveira Soares AA (eds) Nanomaterials for food packaging: materials, processing technologies, and safety issues. Elsevier), pp 203–247

    Google Scholar 

  203. Arrieta MP, Fortunati E, Burgos N, Peltzer MA, López J, Peponi L (2016) Nanocellulose-based polymeric blends for food packaging applications. Multifunctional Polym Nanocomposites Based Cellulosic Reinforcements 205–252

    Google Scholar 

  204. Abbas M, Buntinx M, Deferme W, Peeters R Polymer/ZnOnanocomposites for packaging applications: a review of gas barrier and mechanical properties. Nanomaterials 9(10):1–14

    Google Scholar 

  205. Carbone M, Donia DT, Sabbatella G, Antiochia R (2016) Silver nanoparticles in polymeric matrices for fresh food packaging. J King Saud Univ—Sci 28(4):273–279

    Article  Google Scholar 

  206. An J, Zhang M, Wang S, Tang J (2008) Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWT-Food Sci Technol 41(6):1100–1107

    Article  Google Scholar 

  207. Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam 25(3):241–258

    Article  Google Scholar 

  208. Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2011) Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control 22(3–4):408–413

    Article  Google Scholar 

  209. Chang PR, Jian R, Yu J, Ma X (2010) Fabrication and characterisation of chitosan nanoparticles/plasticised-starch composites. Food Chem 120(3):736–740

    Article  Google Scholar 

  210. Chelliah R, Wei S, Daliri EB, Rubab M, Elahi F, Yeon SJ, Jo KH, Yan P, Liu S, Oh DH (2021) Development of nanosensors based intelligent packaging systems: food quality and medicine. Nanomaterials 11(6):1515

    Article  Google Scholar 

  211. Englande Jr AJ, Krenkel P, Shamas J (2015) Wastewater treatment &water reclamation. Ref Module Earth Syst Environ Sci

    Google Scholar 

  212. Ashbolt NJ (2004) Microbial contamination of drinking water and disease outcomes in developing regions. Toxicology 198(1–3):229–238

    Article  Google Scholar 

  213. Ramírez-Castillo FY, Loera-Muro A, Jacques M, Garneau P, Avelar-González FJ, Harel J, Guerrero-Barrera AL (2015) Waterborne pathogens: detection methods and challenges. Pathogens 4(2):307–334

    Article  Google Scholar 

  214. Pirsaheb M, Sharafi K, Ahmadi E, Moradi M (2017) Prevalence of the waterborne diseases (diarrhea, dysentery, typhoid, and hepatitis A) in West of Iran during 5 years (2006–2010). Ann Trop Med Public Health 10(6)

    Google Scholar 

  215. Gómez-Duarte OG, Bai J, Newell E (2009) Detection of Escherichia coli, Salmonella spp., Shigella spp., Yersinia enterocolitica, Vibrio cholerae, and Campylobacter spp. enteropathogens by 3-reaction multiplex polymerase chain reaction. Diagn Microbiol Infect Dis 63(1):1–9

    Google Scholar 

  216. Rathaur VK, Pathania M, Jayara A, Yadav N (2014) Clinical study of acute childhood diarrhoea caused by bacterial enteropathogens. J Clin Diagn Res JCDR 8(5):PC01

    Google Scholar 

  217. Li XF, Mitch WA (2018) Drinking water disinfection byproducts (DBPs) and human health effects: multidisciplinary challenges and opportunities. Environ Sci Technol 52(4):1681–1689

    Article  Google Scholar 

  218. Ngwenya N, Ncube EJ, Parsons J (2013) Recent advances in drinking water disinfection: successes and challenges. Rev Environ Contam Toxicol 111–170

    Google Scholar 

  219. Gehrke I, Geiser A, Somborn-Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 8:1

    Article  Google Scholar 

  220. Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7(4):331–342

    Article  Google Scholar 

  221. Fernandez-Ibanez P, Polo-López MI, Malato S, Wadhwa S, Hamilton JW, Dunlop PS, D’sa R, Magee E, O’shea K, Dionysiou DD, Byrne JA (2015) Solar photocatalytic disinfection of water using titanium dioxide graphene composites. Chem Eng J 261:36–44

    Article  Google Scholar 

  222. Ashkarran AA, Aghigh SM, Farahani NJ (2011) Visible light photo-and bioactivity of Ag/TiO2 nanocomposite with various silver contents. Curr Appl Phys 11(4):1048–1055

    Article  Google Scholar 

  223. Malakar A, Snow DD (2020) Nanoparticles as sources of inorganic water pollutants. In: Inorganic pollutants in water. Elsevier, pp 337–370

    Google Scholar 

  224. Linley S, Leshuk T, Gu FX (2013) Magnetically separable water treatment technologies and their role in future advanced water treatment: a patent review. Clean-Soil, Air, Water 41(12):1152–1156

    Article  Google Scholar 

  225. Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B (2020) Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 12(8):735

    Article  Google Scholar 

  226. Takeo M, Lee W, Ito M (2015) Wound healing and skin regeneration. Cold Spring Harb Perspect Med 5(1):a023267

    Article  Google Scholar 

  227. Guo SA, DiPietro LA (2010) Factors affecting wound healing. J Dent Res 89(3):219–229

    Article  Google Scholar 

  228. Davis SC, Ricotti C, Cazzaniga A, Welsh E, Eaglstein WH, Mertz PM (2008) Microscopic and physiologic evidence for biofilm-associated wound colonization in vivo. Wound Repair Regeneration 16(1):23–29

    Article  Google Scholar 

  229. Filius PM, Gyssens IC (2002) Impact of increasing antimicrobial resistance on wound management. Am J Clin Dermatol 3(1):1–7

    Article  Google Scholar 

  230. FrykbergRobert G (2015) Challenges in the treatment of chronic wounds. Adv Wound Care

    Google Scholar 

  231. Patra JK, Das G, Fraceto LF, Campos EV, Rodriguez-Torres MD, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16(1):1–33

    Article  Google Scholar 

  232. Fong J, Wood F (2006) Nanocrystalline silver dressings in wound management: a review. Int J Nanomed 1(4):441–449

    Google Scholar 

  233. Yudaev P, Mezhuev Y, Chistyakov E (2022) Nanoparticle-containing wound dressing: antimicrobial and healing effects. Gels 8(6):329

    Article  Google Scholar 

  234. Leu JG, Chen SA, Chen HM, Wu WM, Hung CF, Yao YD, Tu CS, Liang YJ (2012) The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and α-lipoic acid. Nanomed Nanotechnol Biol Med 8(5):767–775

    Google Scholar 

  235. Nanda SS, Wang T, Hossain MI, Yoon HY, Selvan ST, Kim K, Yi DK (2022) Gold-nanorod-based scaffolds for wound-healing applications. ACS Appl Nano Mater 5(6):8640–8648

    Article  Google Scholar 

  236. Joung YH (2013) Development of implantable medical devices: from an engineering perspective. Int Neurourol J 17(3):98

    Article  Google Scholar 

  237. Bazaka K, Jacob MV (2012) Implantable devices: issues and challenges. Electronics 2(1):1–34

    Article  Google Scholar 

  238. VanEpps JS, Younger JG (2016) Implantable device related infection. Shock (Augusta, Ga.) 46(6):597

    Google Scholar 

  239. Chen M, Yu Q, Sun H (2013) Novel strategies for the prevention and treatment of biofilm related infections. Int J Mol Sci 14(9):18488–18501

    Article  Google Scholar 

  240. Khatoon Z, McTiernan CD, Suuronen EJ, Mah TF, Alarcon EI (2018) Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 4(12):e01067

    Article  Google Scholar 

  241. Cao H, Qiao S, Qin H, Jandt KD (2022) Antibacterial designs for implantable medical devices: evolutions and challenges. J Funct Biomater 13(3):86

    Article  Google Scholar 

  242. Zhang E, Zhao X, Hu J, Wang R, Fu S, Qin G (2021) Antibacterial metals and alloys for potential biomedical implants. Bioact Mater 6(8):2569–2612

    Article  Google Scholar 

  243. Shekhawat D, Singh A, Bhardwaj A, Patnaik A (2021) A short review on polymer, metal and ceramic based implant materials. In: IOP conference series: materials science and engineering, vol 1017, No 1. IOP Publishing, p 012038

    Google Scholar 

  244. Ribeiro M, Monteiro FJ, Ferraz MP (2012) Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter 2(4):176–194

    Article  Google Scholar 

  245. Harawaza K, Cousins B, Roach P, Fernandez A (2021) Modification of the surface nanotopography of implant devices: a translational perspective. Mater Today Bio 12:100152

    Article  Google Scholar 

  246. Faisal N, Kumar K (2017) Polymer and metal nanocomposites in biomedical applications. Biointerface Res Appl Chem 7(6):2286–2294

    Google Scholar 

  247. Hérault N, Wagner J, Abram SL, Widmer J, Horvath L, Vanhecke D, Bourquin C, Fromm KM (2020) Silver-containing titanium dioxide nanocapsules for combating multidrug-resistant bacteria. Int J Nanomed 15:1267

    Article  Google Scholar 

  248. Sekiguchi Y, Yao Y, Ohko Y, Tanaka K, Ishido T, Fujishima A, Kubota Y (2007) Self-sterilizing catheters with titanium dioxide photocatalyst thin films for clean intermittent catheterization: basis and study of clinical use. Int J Urol 14(5):426–430

    Article  Google Scholar 

  249. Wang L, Zhang S, Keatch R, Corner G, Nabi G, Murdoch S, Davidson F, Zhao Q (2019) In-vitro antibacterial and anti-encrustation performance of silver-polytetrafluoroethylene nanocomposite coated urinary catheters. J Hosp Infect 103(1):55–63

    Article  Google Scholar 

  250. Kreutzer J, Schneider M, Schlegel U, Ewerbeck V, Breusch SJ (2005) Cemented total hip arthroplasty in Germany–an update. Z Orthop ihreGrenzgebiete 143(1):48–55

    Article  Google Scholar 

  251. Belt HV, Neut D, Schenk W, Horn JR, Mei HC, Busscher HJ (2001) Infection of orthopedic implants and the use of antibiotic-loaded bone cements: a review. Acta Orthop Scand 72(6):557–571

    Article  Google Scholar 

  252. Prokopovich P, Köbrick M, Brousseau E, Perni S (2015) Potent antimicrobial activity of bone cement encapsulating silver nanoparticles capped with oleic acid. J Biomed Mater Res B Appl Biomater 103(2):273–281

    Article  Google Scholar 

  253. Priyadarsini S, Mukherjee S, Mishra M (2018) Nanoparticles used in dentistry: a review. J Oral Biol Craniofac Res 8(1):58–67

    Article  Google Scholar 

  254. Fernandez CC, Sokolonski AR, Fonseca MS, Stanisic D, Araújo DB, Azevedo V, Portela RD, Tasic L (2021) Applications of silver nanoparticles in dentistry: advances and technological innovation. Int J Mol Sci 22(5):2485

    Article  Google Scholar 

  255. Dragland IS, Wellendorf H, Kopperud H, Stenhagen I, Valen H (2019) Investigation on the antimicrobial activity of chitosan-modified zinc oxide-eugenol cement. Biomater Inv Dentist 6(1):99–106

    Google Scholar 

  256. Gaikwad RM, Sokolov I (2008) Silica nanoparticles to polish tooth surfaces for caries prevention. J Dent Res 87(10):980–983

    Article  Google Scholar 

  257. Cousins BG, Allison HE, Doherty PJ, Edwards C, Garvey MJ, Martin DS, Williams RL (2007) Effects of a nanoparticulate silica substrate on cell attachment of Candida albicans. J Appl Microbiol 102(3):757–765

    Article  Google Scholar 

  258. Reynolds EC, Cai F, Shen P, Walker GD (2003) Retention in plaque and remineralization of enamel lesions by various forms of calcium in a mouthrinse or sugar-free chewing gum. J Dent Res 82(3):206–211

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi P. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, R.P., Shirsat, S.D., Shinde, P.V., Mohite, S.S., Mane, R.S. (2023). Nano-antimicrobial Materials: Alternative Antimicrobial Approach. In: Mane, R.S., Sharma, R.P., Kanakdande, A.P. (eds) Nanomaterials for Sustainable Development. Springer, Singapore. https://doi.org/10.1007/978-981-99-1635-1_5

Download citation

Publish with us

Policies and ethics