Skip to main content

Design and Analysis of Chalcogenide GeAsSe Waveguide for Dispersion Properties

  • Conference paper
  • First Online:
Advanced Nanomaterials and Their Applications (ICANA 2022)
  • The original version of this chapter has been revised: Inadvertently published with error in “mm”, and this has been corrected as “µm”. The correction to this chapter is available at https://doi.org/10.1007/978-981-99-1616-0_15.

Abstract

This paper reports the design and analysis of a Ge11.5As24Se64.5 chalcogenide optical waveguide. The structure consists of Ge11.5As24Se64.5 as a core material and Ge11.5As24S64.5 is considered as cladding material. Dispersion, mode, profile, and propagation loss analysis of the waveguide are considered in the near and mid-infrared spectral regions. The designed structure reports a −37.96 ps/nm km at 3 µm wavelength and 0.716 ps/nm km dispersion at 4 µm wavelength. The propagation loss of fundamental mode is 1.84, 2.20, and 1.97 dB/cm at 3, 4, and 6 µm wavelengths, respectively. These results show that the proposed optical waveguide design should find applications in supercontinuum generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 17 August 2023

    A correction has been published.

References

  1. Kogelnik H (1988) Theory of optical waveguides. Springer-Verlag, Germany, Berlin, pp 7–88

    Google Scholar 

  2. Tien PK (1977) Integrated optics and new wave phenomena in optical waveguides. Rev Mod Phys 49:361–420

    Article  CAS  Google Scholar 

  3. Calvo ML, Lakshminarayanan V (2007) Optical waveguides: from theory to applied technologies. CRC Press, Boca Raton

    Google Scholar 

  4. Selvaraja SK, Sethi P (2018) Review on optical waveguides. In: Emerging waveguide technology. Intech Open, London, UK, p 95

    Google Scholar 

  5. Atakaramians S, Afshar V, Monro TM, Abbott D (2013) Terahertz dielectric waveguides. Adv Opt Photonics 5:169–215

    Google Scholar 

  6. Chen F, Wang XL, Wang KM (2007) Development of ion-implanted optical waveguides in optical materials: a review. Opt Mater 29:1523–1542

    Article  CAS  Google Scholar 

  7. Jayakrishnan K, Hitaishi V, Ashok N (2022) Slot waveguide microring resonator based on silicon nitride for refractive index sensing. In: 2022 IEEE international conference on nanoelectronics, nanophotonics, nanomaterials, nanobioscience and nanotechnology (5NANO). IEEE, pp 1–3

    Google Scholar 

  8. Chan WK, Yi-Yan A, Gmitter TJ, Florez LT, Jackel JL, Yablonovitch E, Bhat R, Harbison JP (1990) Optical coupling of GaAs photodetectors integrated with lithium niobate waveguides. IEEE Photonics Technol Lett 2:194–196

    Article  Google Scholar 

  9. Bogaerts W, de Heyn P, Vaerenbergh TV, de Vos K, Selvaraja SK, Claes T, Dumon P, Bienstman P, Van Thourhout D, Baets R (2012) Silicon microring resonators. Laser Photonics Rev 6:47–73

    Article  CAS  Google Scholar 

  10. Uddin MA, Maswood MMS, Dey UK, Alharbi AG, Akter M (2020) A novel optical micro ring resonator biosensor design using lithium niobate on insulator (LNOI) to detect the concentration of glucose. In: 2nd novel intelligent and leading emerging sciences conference, NILES 2020. Institute of Electrical and Electronics Engineers Inc., pp 350–354

    Google Scholar 

  11. Bogaerts W, Selvaraja SK, Dumon P, Brouckaert J, de Vos K, Van Thourhout D, Baets R (2010) Silicon-on-insulator spectral filters fabricated with CMOS technology. IEEE J Sel Top Quantum Electron 16:33–44

    Google Scholar 

  12. Neethish MM, Acharyya JN, Kiran PP, Prakash GV, Sharan A, Kumar VVRK (2022) Broad white light supercontinuum generation in Barium Zinc Borate glasses. J Lumin 251:119190

    Article  CAS  Google Scholar 

  13. Zhang J, Jiang J, Wang K, Ishihara H, Shimada K, Umeda S, Yokoyama N, Honda H, Kurose K, Kawata Y, Sugita A, Inoue Y, Uemukai M, Tanikawa T, Katayama R, Nakano T (2022) Fabrication and evaluation of rib-waveguide-type wavelength conversion devices using GaN-QPM crystals. Jpn J Appl Phys 61:SK1020

    Google Scholar 

  14. Eisenberg HS, Morandotti R, Silberberg Y, Arnold JM, Pennelli G, Aitchison JS (2002) Optical discrete solitons in waveguide arrays. I. Soliton formation. J Opt Soc Am B 19:2938

    Google Scholar 

  15. Fukuda H, Yamada K, Shoji T, Takahashi M, Tsuchizawa T, Watanabe T, Takahashi JI, Itabashi SI, Lee DKKR, Lim HC, Luan A, Agarwal J, Foresi LC (2005) Four-wave mixing in silicon wire waveguides. Opt Express 13:4629–4637

    Article  CAS  Google Scholar 

  16. Frigg A, Boes A, Ren G, Nguyen TG, Choi DY, Gees S, Moss D, Mitchell A (2020) Optical frequency comb generation with low temperature reactive sputtered silicon nitride waveguides. APL Photonics 5(011302):1–6

    Google Scholar 

  17. Serna S, Lin H, Alonso-Ramos C, Yadav A, le Roux X, Richardson K, Cassan E, Dubreuil N, Hu J, Vivien L (2018) Nonlinear optical properties of integrated GeSbS chalcogenide waveguides. Photonics Res 6:B37–B42

    Article  CAS  Google Scholar 

  18. Zhai Y, Yuan C, Qi R, Zhang W, Huang Y (2015) Reverse ridge/slot chalcogenide glass waveguide with ultrabroadband flat and low dispersion. IEEE Photonics J 7:7801609

    Article  Google Scholar 

  19. Ashok N, Lee YL, Shin WJ (2017) Chalcogenide waveguide structure for dispersion in mid-infrared wavelength. Jpn J Appl Phys 56(032501):1–5

    Google Scholar 

  20. Karim MR, Ahmad H, Ghosh S, Rahman BMA (2018) Design of dispersion engineered As2Se3 channel waveguide for mid-infrared region supercontinuum generation. J Appl Phys 123:213101

    Article  Google Scholar 

  21. Xia D, Huang Y, Zhang B, Yang Z, Zeng P, Shang H, Cheng H, Liu L, Zhang M, Zhu Y, Li Z (2021) On-chip broadband mid-infrared supercontinuum generation based on highly nonlinear chalcogenide glass waveguides. Front Phys 9:598091

    Article  Google Scholar 

  22. Zhang L, Yue Y, Li YX, Beausoleil RG, Willner AE (2009) Highly dispersive slot waveguides. Opt Express 17:7095–7101

    Google Scholar 

  23. Zhu M, Liu H, Li X, Huang N, Sun Q, Wen J, Wang Z (2012) Ultrabroadband flat dispersion tailoring of dual-slot silicon waveguides. Opt Express 20:15899

    Article  CAS  Google Scholar 

  24. Mann V, Ashok N, Rastogi V (2015) Coupled strip-slot waveguide design for dispersion compensation. Opt Quantum Electron 47:3161–3169

    Article  Google Scholar 

  25. Huang J, Ye F, Li Q (2022) Simultaneous pulse combination and nearly self-similar pulse compression in tapered silicon waveguides at around 2.0 μm. IEEE Photonics J 14(4):1–7

    Google Scholar 

  26. Liu M, Gu C, Fan X, Li Z, Huang H, Lu Z, Zhao W (2022) Efficient dispersion engineering for three-octave-spanning supercontinuum generation in nanophotonic waveguides. Opt Laser Technol 150:107923

    Article  CAS  Google Scholar 

  27. Ma P, Choi DY, Yu Y, Gai X, Yang Z, Debbarma S, Madden S, Davies BL (2013) Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared. Opt Express 21:29927–29937

    Article  Google Scholar 

  28. Yu Y, Gai X, Ma P, Vu K, Yang Z, Wang R, Choi DY, Madden S, Davies BL (2016) Experimental demonstration of linearly polarized 2–10 μm supercontinuum generation in a chalcogenide rib waveguide. Opt Lett 41:958–961

    Article  Google Scholar 

  29. Gai X, Han T, Prasad A, Madden S, Choi DY, Wang R, Bulla D, Davies BL (2010) Progress in optical waveguides fabricated from chalcogenide glasses. Opt Express 18(25):26635–26646

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Vellore Institute of Technology, Vellore, for their assistance with the software. We wish to extend our special thanks to VIT-AP University for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandam Ashok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hitaishi, V., Jayakrishnan, K., Ashok, N. (2023). Design and Analysis of Chalcogenide GeAsSe Waveguide for Dispersion Properties. In: Rao, N.M., Lingamallu, G., Agarwal, M. (eds) Advanced Nanomaterials and Their Applications. ICANA 2022. Springer Proceedings in Materials, vol 22. Springer, Singapore. https://doi.org/10.1007/978-981-99-1616-0_9

Download citation

Publish with us

Policies and ethics