Skip to main content

Singularity-Free Gravitational Collapse: From Regular Black Holes to Horizonless Objects

  • Chapter
  • First Online:
Regular Black Holes

Abstract

Penrose’s singularity theorem implies that if a trapped region forms in a gravitational collapse, then a singularity must form as well within such region. However, it is widely expected that singularities should be generically avoided by quantum gravitational effects. Here we shall explore both the minimum requirements to avoid singularities in a gravitational collapse as well as discuss, without relying on a specific quantum gravity model, the possible regular spacetimes associated to such regularization of the spacetime fabric. In particular, we shall expose the intimate and quite subtle relationship between regular black holes, black bounces and their corresponding horizonless object limits. In doing so, we shall devote specific attention to those critical (extremal) black hole configurations lying at the boundary between horizonful and horizonless geometries. While these studies are carried out in stationary configurations, the presence of generic instabilities strongly suggest the need for considering more realistic time-dependent dynamical spacetimes. Missing specific dynamical models, much less rigorous statements can be made for evolving geometries. We shall nonetheless summarize here their present understanding and discuss their implications for future phenomenological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This can be relaxed so to admit Planck scale regions still requiring a quantum gravitational description, as long as these are not considered as missing points from the manifold, as indeed in this case one can still consider to cover them by analytically extending the regular geometry describing the rest of the spacetime.

  2. 2.

    No assumptions on the topology of the Cauchy hypersurface are actually required if we instead assume the existence of at least one geodesic that does not fall into the black hole [73].

  3. 3.

    This can be somewhat expected based on the heuristic argument that, if ones starts at early times with a dilute star in quasi-Minkoswki vacuum then, in the absence of a Cauchy horizon [66], a free-fall collapse would allow one to keep renormalizing the stress energy tensor at different radii, obtaining small deviations from the initial vacuum in the local inertial frame. Hence, this would prevent the build up of large quantum effects able to slow down the collapse before the formation of a trapping horizon. Of course, one might consider the possibility of different initial conditions, e.g. concerning the vacuum state at past null infinity, something that has so far received quite limited attention (see e.g. [61]).

  4. 4.

    There are additional complications if one abandons asymptotic flatness. For instance in asymptotically de Sitter spacetimes one also encounters OSCOs, outermost stable circular orbits [28, 33].

References

  1. B.P. Abbott et al., [LIGO Scientific and Virgo], Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102. arXiv:1602.03837 [gr-qc]

  2. B.P. Abbott et al., [LIGO Scientific and Virgo], GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119(16), 161101 (2017). https://doi.org/10.1103/PhysRevLett.119.161101. arXiv:1710.05832 [gr-qc]

  3. B.P. Abbott et al., [LIGO Scientific and Virgo], GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116(24), 241103 (2016). https://doi.org/10.1103/PhysRevLett.116.241103. arXiv:1606.04855 [gr-qc]

  4. B.P. Abbott et al., [LIGO Scientific, Virgo, et al.], Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett. 848(2), L12 (2017). https://doi.org/10.3847/2041-8213/aa91c9. arXiv:1710.05833 [astro-ph.HE]

  5. J. Abedi, H. Arfaei, Obstruction of black hole singularity by quantum field theory effects. JHEP 03, 135 (2016). https://doi.org/10.1007/JHEP03(2016)135. arXiv:1506.05844 [gr-qc]

  6. R. Abuter et al., [GRAVITY], Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astrophys. 615, L15 (2018). https://doi.org/10.1051/0004-6361/201833718. arXiv:1807.09409 [astro-ph.GA]

  7. K. Akiyama et al., [Event Horizon Telescope], First M87 event horizon telescope results. I. The shadow of the supermassive black hole. Astrophys. J. Lett. 875, L1 (2019). https://doi.org/10.3847/2041-8213/ab0ec7. arXiv:1906.11238 [astro-ph.GA]

  8. K. Akiyama et al., [Event Horizon Telescope], First M87 event horizon telescope results. IV. Imaging the central supermassive black hole. Astrophys. J. Lett. 875(1), L4 (2019). https://doi.org/10.3847/2041-8213/ab0e85. arXiv:1906.11241 [astro-ph.GA]

  9. K. Akiyama et al., [Event Horizon Telescope], First M87 event horizon telescope results. VI. The shadow and mass of the central black hole. Astrophys. J. Lett. 875(1), L6 (2019). https://doi.org/10.3847/2041-8213/ab1141. arXiv:1906.11243 [astro-ph.GA]

  10. K. Akiyama et al., [Event Horizon Telescope], First sagittarius A* event horizon telescope results. I. The shadow of the supermassive black hole in the center of the Milky Way. Astrophys. J. Lett. 930(2), L12 (2022). https://doi.org/10.3847/2041-8213/ac6674

  11. J. Ambjorn, J. Jurkiewicz, R. Loll, A Nonperturbative Lorentzian path integral for gravity. Phys. Rev. Lett. 85, 924–927 (2000). https://doi.org/10.1103/PhysRevLett.85.924. arXiv:hep-th/0002050 [hep-th]

  12. J. Ambjorn, J. Jurkiewicz, R. Loll, Dynamically triangulating Lorentzian quantum gravity. Nucl. Phys. B 610, 347–382 (2001). https://doi.org/10.1016/S0550-3213(01)00297-8. arXiv:hep-th/0105267 [hep-th]

  13. L. Andersson, M. Mars, W. Simon, Local existence of dynamical and trapping horizons. Phys. Rev. Lett. 95, 111102 (2005). https://doi.org/10.1103/PhysRevLett.95.111102. arXiv:gr-qc/0506013 [gr-qc]

  14. S. Ansoldi, Spherical black holes with regular center: a review of existing models including a recent realization with Gaussian sources. arXiv:0802.0330 [gr-qc]

  15. A. Ashtekar, M. Bojowald, Quantum geometry and the Schwarzschild singularity. Class. Quant. Grav. 23, 391–411 (2006). https://doi.org/10.1088/0264-9381/23/2/008. arXiv:gr-qc/0509075 [gr-qc]

  16. C. Bambi, Testing black hole candidates with electromagnetic radiation. Rev. Mod. Phys. 89(2), 025001 (2017). https://doi.org/10.1103/RevModPhys.89.025001. arXiv:1509.03884 [gr-qc]

  17. L. Barack, C. Cutler, LISA capture sources: approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy. Phys. Rev. D 69, 082005 (2004). https://doi.org/10.1103/PhysRevD.69.082005. arXiv:gr-qc/0310125 [gr-qc]

  18. E. Barausse, E. Berti, T. Hertog, S.A. Hughes, P. Jetzer, P. Pani, T.P. Sotiriou, N. Tamanini, H. Witek, K. Yagi et al., Prospects for fundamental physics with LISA. Gen. Rel. Grav. 52(8), 81 (2020). https://doi.org/10.1007/s10714-020-02691-1. arXiv:2001.09793 [gr-qc]

  19. J.M. Bardeen, Non-singular general relativistic gravitational collapse, in Abstracts of the International Conference GR5 (Georgia, former U.S.S.R, Tbilisi, 1968)

    Google Scholar 

  20. C. Barceló, V. Boyanov, R. Carballo-Rubio, L.J. Garay, Black hole inner horizon evaporation in semiclassical gravity. Class. Quant. Grav. 38(12), 125003 (2021). https://doi.org/10.1088/1361-6382/abf89c. arXiv:2011.07331 [gr-qc]

  21. C. Barceló, V. Boyanov, R. Carballo-Rubio, L.J. Garay, Classical mass inflation versus semiclassical inner horizon inflation. Phys. Rev. D 106(12), 124006 (2022). https://doi.org/10.1103/PhysRevD.106.124006. arXiv:2203.13539 [gr-qc]

  22. C. Barceló, S. Liberati, S. Sonego, M. Visser, Fate of gravitational collapse in semiclassical gravity. Phys. Rev. D 77, 044032 (2008). https://doi.org/10.1103/PhysRevD.77.044032. arXiv:0712.1130 [gr-qc]

  23. C. Barceló, S. Liberati, S. Sonego, M. Visser, Revisiting the semiclassical gravity scenario for gravitational collapse. AIP Conf. Proc. 1122(1), 99–106 (2009). https://doi.org/10.1063/1.3141347. arXiv:0909.4157 [gr-qc]

  24. C. Barceló, S. Liberati, S. Sonego, M. Visser, Black Stars. Not Holes. Sci. Am. 301(4), 38–45 (2009). https://doi.org/10.1038/scientificamerican1009-38

    Article  Google Scholar 

  25. C. Barceló, M. Visser, Twilight for the energy conditions? Int. J. Mod. Phys. D 11, 1553–1560 (2002). https://doi.org/10.1142/S0218271802002888. arXiv:gr-qc/0205066 [gr-qc]

  26. P. Bargueno, Light rings in static and extremal black holes. arXiv:2211.16899 [gr-qc]

  27. A.N. Bernal, M. Sanchez, On smooth Cauchy hypersurfaces and Geroch’s splitting theorem. Commun. Math. Phys. 243, 461–470 (2003). https://doi.org/10.1007/s00220-003-0982-6. arXiv:gr-qc/0306108 [gr-qc]

  28. T. Berry, A. Simpson, M. Visser, Photon spheres, ISCOs, and OSCOs: astrophysical observables for regular black holes with asymptotically Minkowski cores. Universe 7(1), 2 (2020). https://doi.org/10.3390/universe7010002. arXiv:2008.13308 [gr-qc]

  29. E. Berti, V. Cardoso, C.M. Will, On gravitational-wave spectroscopy of massive black holes with the space interferometer LISA. Phys. Rev. D 73, 064030 (2006). https://doi.org/10.1103/PhysRevD.73.064030. arXiv:gr-qc/0512160 [gr-qc]

  30. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1984). ISBN 978-0-521-27858-4. https://doi.org/10.1017/CBO9780511622632

  31. P. Boonserm, M. Visser, Buchdahl-like transformations for perfect fluid spheres. Int. J. Mod. Phys. D 17, 135–163 (2008). https://doi.org/10.1142/S0218271808011912. arXiv:0707.0146 [gr-qc]

  32. P. Boonserm, T. Ngampitipan, A. Simpson, M. Visser, Exponential metric represents a traversable wormhole. Phys. Rev. D 98(8), 084048 (2018). https://doi.org/10.1103/PhysRevD.98.084048. arXiv:1805.03781 [gr-qc]

  33. P. Boonserm, T. Ngampitipan, A. Simpson, M. Visser, Innermost and outermost stable circular orbits in the presence of a positive cosmological constant. Phys. Rev. D 101(2), 024050 (2020). https://doi.org/10.1103/PhysRevD.101.024050. arXiv:1909.06755 [gr-qc]

  34. I. Booth, B. Creelman, J. Santiago, M. Visser, Evading the Trans-Planckian problem with Vaidya spacetimes. JCAP 09, 067 (2019). https://doi.org/10.1088/1475-7516/2019/09/067. arXiv:1809.10412 [gr-qc]

  35. A. Borde, Geodesic focusing, energy conditions and singularities. Class. Quant. Grav. 4, 343–356 (1987). https://doi.org/10.1088/0264-9381/4/2/015

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. A.E. Broderick, T. Johannsen, A. Loeb, D. Psaltis, Testing the no-hair theorem with event horizon telescope observations of Sagittarius A*. Astrophys. J. 784, 7 (2014). https://doi.org/10.1088/0004-637X/784/1/7. arXiv:1311.5564 [astro-ph.HE]

  37. R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio, M. Visser, On the viability of regular black holes. JHEP 07, 023 (2018). https://doi.org/10.1007/JHEP07(2018)023. arXiv:1805.02675 [gr-qc]

  38. R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio, M. Visser, Inner horizon instability and the unstable cores of regular black holes. JHEP 05, 132 (2021). https://doi.org/10.1007/JHEP05(2021)132. arXiv:2101.05006 [gr-qc]

  39. R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio, M. Visser, Regular black holes without mass inflation instability. JHEP 09, 118 (2022). https://doi.org/10.1007/JHEP09(2022)118. arXiv:2205.13556 [gr-qc]

  40. R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio, M. Visser, Comment on “Stability properties of Regular Black Holes”. arXiv:2212.07458 [gr-qc]

  41. R. Carballo-Rubio, F. Di Filippo, S. Liberati, M. Visser, Phenomenological aspects of black holes beyond general relativity. Phys. Rev. D 98(12), 124009 (2018). https://doi.org/10.1103/PhysRevD.98.124009. arXiv:1809.08238 [gr-qc]

  42. R. Carballo-Rubio, F. Di Filippo, S. Liberati, M. Visser, Geodesically complete black holes. Phys. Rev. D 101, 084047 (2020). https://doi.org/10.1103/PhysRevD.101.084047. arXiv:1911.11200 [gr-qc]

  43. R. Carballo-Rubio, F. Di Filippo, S. Liberati, M. Visser, Constraints on horizonless objects after the EHT observation of Sagittarius A*. JCAP 08(08), 055 (2022). https://doi.org/10.1088/1475-7516/2022/08/055. arXiv:2205.13555 [astro-ph.HE]

  44. R. Carballo-Rubio, F. Di Filippo, S. Liberati, M. Visser, A connection between regular black holes and horizonless ultracompact stars. arXiv:2211.05817 [gr-qc]

  45. V. Cardoso, L. Gualtieri, Testing the black hole ‘no-hair’ hypothesis. Class. Quant. Grav. 33(17), 174001 (2016). https://doi.org/10.1088/0264-9381/33/17/174001. arXiv:1607.03133 [gr-qc]

  46. V. Cardoso, P. Pani, Testing the nature of dark compact objects: a status report. Living Rev. Rel. 22(1), 4 (2019). https://doi.org/10.1007/s41114-019-0020-4. arXiv:1904.05363 [gr-qc]

  47. K. Crowther, S. De Haro, Four attitudes towards singularities in the search for a theory of quantum gravity. arXiv:2112.08531 [gr-qc]

  48. P.V.P. Cunha, C. Herdeiro, E. Radu, N. Sanchis-Gual, The fate of the light-ring instability. arXiv:2207.13713 [gr-qc]

  49. E. Curiel, A primer on energy conditions. Einstein Stud. 13, 43–104 (2017). https://doi.org/10.1007/978-1-4939-3210-8_3. arXiv:1405.0403 [physics.hist-ph]

  50. M. Dafermos, Spherically symmetric space-times with a trapped surface. Class. Quant. Grav. 22, 2221–2232 (2005). https://doi.org/10.1088/0264-9381/22/11/019. arXiv:gr-qc/0403032 [gr-qc]

  51. F. Di Filippo, R. Carballo-Rubio, S. Liberati, C. Pacilio, M. Visser, On the inner horizon instability of non-singular black holes. Universe 8(4), 204 (2022). https://doi.org/10.3390/universe8040204. arXiv:2203.14516 [gr-qc]

  52. I. Dymnikova, Int. J. Mod. Phys. D 12, 1015–1034 (2003). https://doi.org/10.1142/S021827180300358X. arXiv:gr-qc/0304110 [gr-qc]

  53. I. Dymnikova, Class. Quant. Grav. 21, 4417–4429 (2004). https://doi.org/10.1088/0264-9381/21/18/009. arXiv:gr-qc/0407072 [gr-qc]

  54. A. Einstein, The foundation of the general theory of relativity. Ann. Phys. 49(7), 769–822 (1916). https://doi.org/10.1002/andp.19163540702

  55. C.J. Fewster, G.J. Galloway, Singularity theorems from weakened energy conditions. Class. Quant. Grav. 28, 125009 (2011). https://doi.org/10.1088/0264-9381/28/12/125009. arXiv:1012.6038 [gr-qc]

  56. C.J. Fewster, Lectures on quantum energy inequalities. arXiv:1208.5399 [gr-qc]

  57. L.H. Ford, T.A. Roman, Averaged energy conditions and quantum inequalities. Phys. Rev. D 51, 4277–4286 (1995). https://doi.org/10.1103/PhysRevD.51.4277. arXiv:gr-qc/9410043 [gr-qc]

  58. L.H. Ford, The classical singularity theorems and their quantum loop holes. Int. J. Theor. Phys. 42, 1219–1227 (2003). https://doi.org/10.1023/A:1025754515197. arXiv:gr-qc/0301045 [gr-qc]

  59. E. Franzin, S. Liberati, J. Mazza, A. Simpson, M. Visser, Charged black-bounce spacetimes. JCAP 07, 036 (2021). https://doi.org/10.1088/1475-7516/2021/07/036. arXiv:2104.11376 [gr-qc]

  60. E. Franzin, S. Liberati, J. Mazza, V. Vellucci, Stable rotating regular black holes. arXiv:2207.08864 [gr-qc]

  61. K. Fredenhagen, R. Haag, On the derivation of Hawking radiation associated with the formation of a black hole. Commun. Math. Phys. 127, 273 (1990). https://doi.org/10.1007/BF02096757

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. V.P. Frolov, I.D. Novikov, Black Hole Physics: Basic Concepts and New Developments. https://doi.org/10.1007/978-94-011-5139-9

  63. V.P. Frolov, Information loss problem and a ‘black hole’ model with a closed apparent horizon. JHEP 05, 049 (2014). https://doi.org/10.1007/JHEP05(2014)049. arXiv:1402.5446 [hep-th]

  64. V.P. Frolov, A. Zelnikov, Quantum radiation from a sandwich black hole. Phys. Rev. D 95(4), 044042 (2017). https://doi.org/10.1103/PhysRevD.95.044042. arXiv:1612.05319 [hep-th]

  65. V.P. Frolov, A. Zelnikov, Quantum radiation from an evaporating nonsingular black hole. Phys. Rev. D 95(12), 124028 (2017). https://doi.org/10.1103/PhysRevD.95.124028. arXiv:1704.03043 [hep-th]

  66. S.A. Fulling, M. Sweeny, R.M. Wald, Singularity structure of the two point function in quantum field theory in curved space-time. Commun. Math. Phys. 63, 257–264 (1978). https://doi.org/10.1007/BF01196934

  67. L.J. Garay, Quantum gravity and minimum length. Int. J. Mod. Phys. A 10, 145–166 (1995). https://doi.org/10.1142/S0217751X95000085. arXiv:gr-qc/9403008 [gr-qc]

  68. R.P. Geroch, What is a singularity in general relativity? Ann. Phys. 48, 526–540 (1968). https://doi.org/10.1016/0003-4916(68)90144-9

  69. S.E. Gralla, Can the EHT M87 results be used to test general relativity? Phys. Rev. D 103(2), 024023 (2021). https://doi.org/10.1103/PhysRevD.103.024023. arXiv:2010.08557 [astro-ph.HE]

  70. S.A. Hayward, General laws of black hole dynamics. Phys. Rev. D 49, 6467–6474 (1994). https://doi.org/10.1103/PhysRevD.49.6467

    Article  ADS  MathSciNet  Google Scholar 

  71. S.A. Hayward, Formation and evaporation of regular black holes. Phys. Rev. Lett. 96, 031103 (2006). https://doi.org/10.1103/PhysRevLett.96.031103. arXiv:gr-qc/0506126 [gr-qc]

  72. S.W. Hawking, Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975). [erratum: Commun. Math. Phys. 46, 206 (1976)]. https://doi.org/10.1007/BF02345020

  73. S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 2011). ISBN 978-0-521-20016-5, 978-0-521-09906-6, 978-0-511-82630-6, 978-0-521-09906-6. https://doi.org/10.1017/CBO9780511524646

  74. S.W. Hawking, R. Penrose, The singularities of gravitational collapse and cosmology. Proc. Roy. Soc. Lond. A 314, 529–548 (1970). https://doi.org/10.1098/rspa.1970.0021

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. A. Held, R. Gold, A. Eichhorn, Asymptotic safety casts its shadow. JCAP 06, 029 (2019). https://doi.org/10.1088/1475-7516/2019/06/029. arXiv:1904.07133 [gr-qc]

  76. D. Hochberg, M. Visser, Geometric structure of the generic static traversable wormhole throat. Phys. Rev. D 56, 4745–4755 (1997). https://doi.org/10.1103/PhysRevD.56.4745. arXiv:gr-qc/9704082 [gr-qc]

  77. D. Hochberg, M. Visser, Dynamic wormholes, anti-trapped surfaces, and energy conditions. Phys. Rev. D 58, 044021 (1998). https://doi.org/10.1103/PhysRevD.58.044021. arXiv:gr-qc/9802046 [gr-qc]

  78. S. Hod, Extremal black holes have external light rings. arXiv:2211.15983 [gr-qc]

  79. T. Johannsen, A.E. Broderick, P.M. Plewa, S. Chatzopoulos, S.S. Doeleman, F. Eisenhauer, V.L. Fish, R. Genzel, O. Gerhard, M.D. Johnson, Testing general relativity with the shadow size of Sgr A*. Phys. Rev. Lett. 116(3), 031101 (2016). https://doi.org/10.1103/PhysRevLett.116.031101. arXiv:1512.02640 [astro-ph.GA]

  80. T. Johannsen, Sgr A* and general relativity. Class. Quant. Grav. 33(11), 113001 (2016). https://doi.org/10.1088/0264-9381/33/11/113001. arXiv:1512.03818 [astro-ph.GA]

  81. E.A. Kontou, K. Sanders, Energy conditions in general relativity and quantum field theory. Class. Quant. Grav. 37(19), 193001 (2020). https://doi.org/10.1088/1361-6382/ab8fcf. arXiv:2003.01815 [gr-qc]

  82. F.S.N. Lobo, M.E. Rodrigues, M.V. de Sousa Silva, A. Simpson, M. Visser, Novel black-bounce spacetimes: wormholes, regularity, energy conditions, and causal structure. Phys. Rev. D 103(8), 084052 (2021). https://doi.org/10.1103/PhysRevD.103.084052. arXiv:2009.12057 [gr-qc]

  83. M. Mars, M.M. Martín-Prats, J. Senovilla, Models of regular Schwarzschild black holes satisfying weak energy conditions. Class. Quant. Grav. 13(5), L51–L58 (1996). https://doi.org/10.1088/0264-9381/13/5/003

    Article  MathSciNet  MATH  Google Scholar 

  84. P. Martín-Moruno, M. Visser, Classical and semi-classical energy conditions. Fund. Theor. Phys. 189, 193–213 (2017). https://doi.org/10.1007/978-3-319-55182-1_9. arXiv:1702.05915 [gr-qc]

  85. P. Martín-Moruno, M. Visser, Hawking-Ellis classification of stress-energy tensors: test fields versus backreaction. Phys. Rev. D 103(12), 124003 (2021). https://doi.org/10.1103/PhysRevD.103.124003. arXiv:2102.13551 [gr-qc]

  86. J. Mazza, E. Franzin, S. Liberati, A novel family of rotating black hole mimickers. JCAP 04, 082 (2021). https://doi.org/10.1088/1475-7516/2021/04/082. arXiv:2102.01105 [gr-qc]

  87. P.O. Mazur, E. Mottola, Gravitational condensate stars: an alternative to black holes. arXiv:gr-qc/0109035 [gr-qc]

  88. P.O. Mazur, E. Mottola, Gravitational vacuum condensate stars. Proc. Nat. Acad. Sci. 101, 9545–9550 (2004). https://doi.org/10.1073/pnas.0402717101. arXiv:gr-qc/0407075 [gr-qc]

  89. L. Mersini-Houghton, Backreaction of Hawking radiation on a gravitationally collapsing star I: black holes? Phys. Lett. B 738, 61–67 (2014). https://doi.org/10.1016/j.physletb.2014.09.018. arXiv:1406.1525 [hep-th]

  90. L. Mersini-Houghton, H.P. Pfeiffer, Back-reaction of the Hawking radiation flux on a gravitationally collapsing star II. arXiv:1409.1837 [hep-th]

  91. M.S. Morris, K.S. Thorne, Wormholes in space-time and their use for interstellar travel: a tool for teaching general relativity. Amer. J. Phys. 56, 395–412 (1988). https://doi.org/10.1119/1.15620

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. M.S. Morris, K.S. Thorne, U. Yurtsever, Wormholes, Time machines, and the weak energy condition. Phys. Rev. Lett. 61, 1446–1449 (1988). https://doi.org/10.1103/PhysRevLett.61.1446

    Article  ADS  Google Scholar 

  93. L. Parker, S.A. Fulling, Quantized matter fields and the avoidance of singularities in general relativity. Phys. Rev. D 7, 2357–2374 (1973). https://doi.org/10.1103/PhysRevD.7.2357

    Article  ADS  Google Scholar 

  94. R. Penrose, Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57–59 (1965). https://doi.org/10.1103/PhysRevLett.14.57

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. R. Penrose, Gravitational collapse: the role of general relativity. Riv. Nuovo Cim. 1, 252–276 (1969). https://doi.org/10.1023/A:1016578408204

    Article  ADS  Google Scholar 

  96. R. Penrose, Techniques of Differential Topology in Relativity (SIAM Press, Philadelpha, 1972)

    Book  MATH  Google Scholar 

  97. E. Poisson, W. Israel, Internal structure of black holes. Phys. Rev. D 41, 1796–1809 (1990). https://doi.org/10.1103/PhysRevD.41.1796

    Article  ADS  MathSciNet  Google Scholar 

  98. D. Psaltis, Testing general relativity with the event horizon telescope. Gen. Rel. Grav. 51(10), 137 (2019). https://doi.org/10.1007/s10714-019-2611-5. arXiv:1806.09740 [astro-ph.HE]

  99. T.A. Roman, P.G. Bergmann, Stellar collapse without singularities? Phys. Rev. D 28, 1265–1277 (1983). https://doi.org/10.1103/PhysRevD.28.1265

    Article  ADS  MathSciNet  Google Scholar 

  100. C. Rovelli, L. Smolin, Discreteness of area and volume in quantum gravity. Nucl. Phys. B 442, 593–622 (1995). [erratum: Nucl. Phys. B 456, 753–754 (1995)]. https://doi.org/10.1016/0550-3213(95)00150-Q. arXiv:gr-qc/9411005 [gr-qc]

  101. M. Rummel, C.P. Burgess, Constraining fundamental physics with the event horizon telescope. JCAP 05, 051 (2020). https://doi.org/10.1088/1475-7516/2020/05/051. arXiv:2001.00041 [gr-qc]

  102. E. Schnetter, B. Krishnan, Non-symmetric trapped surfaces in the Schwarzschild and Vaidya spacetimes. Phys. Rev. D 73, 021502 (2006). https://doi.org/10.1103/PhysRevD.73.021502. arXiv:gr-qc/0511017 [gr-qc]

  103. J.M.M. Senovilla, D. Garfinkle, The 1965 Penrose singularity theorem. Class. Quant. Grav. 32(12), 124008 (2015). https://doi.org/10.1088/0264-9381/32/12/124008. arXiv:1410.5226 [gr-qc]

  104. A. Simpson, M. Visser, Black-bounce to traversable wormhole. JCAP 02, 042 (2019). https://doi.org/10.1088/1475-7516/2019/02/042. arXiv:1812.07114 [gr-qc]

  105. A. Simpson, P. Martín-Moruno, M. Visser, Vaidya spacetimes, black-bounces, and traversable wormholes. Class. Quant. Grav. 36(14), 145007 (2019). https://doi.org/10.1088/1361-6382/ab28a5. arXiv:1902.04232 [gr-qc]

  106. A. Simpson, M. Visser, Regular black holes with asymptotically Minkowski cores. Universe 6(1), 8 (2019). https://doi.org/10.3390/universe6010008. arXiv:1911.01020 [gr-qc]

  107. A. Simpson, M. Visser, The eye of the storm: a regular Kerr black hole. JCAP 03(03), 011 (2022). https://doi.org/10.1088/1475-7516/2022/03/011. arXiv:2111.12329 [gr-qc]

  108. A. Simpson, M. Visser, Astrophysically viable Kerr-like spacetime. Phys. Rev. D 105(6), 064065 (2022). https://doi.org/10.1103/PhysRevD.105.064065. arXiv:2112.04647 [gr-qc]

  109. R.D. Sorkin, Causal sets: discrete gravity. https://doi.org/10.1007/0-387-24992-3_7. arXiv:gr-qc/0309009 [gr-qc]

  110. T.P. Sotiriou, M. Visser, S. Weinfurtner, Spectral dimension as a probe of the ultraviolet continuum regime of causal dynamical triangulations. Phys. Rev. Lett. 107, 131303 (2011). https://doi.org/10.1103/PhysRevLett.107.131303. arXiv:1105.5646 [gr-qc]

  111. M. Visser, Traversable wormholes: some simple examples. Phys. Rev. D 39, 3182–3184 (1989). https://doi.org/10.1103/PhysRevD.39.3182. arXiv:0809.0907 [gr-qc]

  112. M. Visser, Traversable wormholes from surgically modified Schwarzschild space-times. Nucl. Phys. B 328, 203–212 (1989). https://doi.org/10.1016/0550-3213(89)90100-4. arXiv:0809.0927 [gr-qc]

  113. M. Visser, Dirty black holes: thermodynamics and horizon structure. Phys. Rev. D 46, 2445–2451 (1992). https://doi.org/10.1103/PhysRevD.46.2445. arXiv:hep-th/9203057 [hep-th]

  114. M. Visser, Lorentzian Wormholes: From Einstein to Hawking (AIP Press — now Springer, New York, 1995)

    Google Scholar 

  115. M. Visser, C. Barceló, S. Liberati, S. Sonego, Small, dark, and heavy: but is it a black hole? PoS BHGRS, 010 (2008). https://doi.org/10.22323/1.075.0010. arXiv:0902.0346 [gr-qc]

  116. M. Visser, Which number system is “Best” for describing empirical reality? Mathematics 10(18), 3340 (2022). https://doi.org/10.3390/math10183340. arXiv:1212.6274 [math-ph]

  117. S.H. Völkel, E. Barausse, N. Franchini, A.E. Broderick, EHT tests of the strong-field regime of general relativity. Class. Quant. Grav. 38(21), 21LT01 (2021). https://doi.org/10.1088/1361-6382/ac27ed. arXiv:2011.06812 [gr-qc]

  118. U. Yurtsever, Does quantum field theory enforce the averaged weak energy condition? Class. Quant. Grav. 7, L251–L258 (1990). https://doi.org/10.1088/0264-9381/7/11/005

    Article  ADS  MathSciNet  Google Scholar 

  119. O.B. Zaslavskii, Regular black holes and energy conditions. Phys. Lett. B 688, 278–280 (2010). https://doi.org/10.1016/j.physletb.2010.04.031. arXiv:1004.2362 [gr-qc]

  120. Z. Zhong, V. Cardoso, E. Maggio, On the instability of ultracompact horizonless spacetimes. arXiv:2211.16526 [gr-qc]

Download references

Acknowledgements

RCR acknowledges financial support through a research grant (29405) from VILLUM fonden. FDF acknowledges financial support by Japan Society for the Promotion of Science Grants-in-Aid for international research fellow No. 21P21318. SL acknowledges funding from the Italian Ministry of Education and Scientific Research (MIUR) under the grant PRIN MIUR 2017-MB8AEZ. CP acknowledges the financial support provided under the European Union’s H2020 ERC, Starting Grant agreement no. DarkGRA–757480 and support under the MIUR PRIN and FARE programmes (GW- NEXT, CUP: B84I20000100001). MV was supported by the Marsden Fund, via a grant administered by the Royal Society of New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Carballo-Rubio .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Extremal Horizons

A general feature implicit in the discussion above is that special things happen to the spacetime geometry at horizons, and that even more special things happen at extremal horizons. However different special things might happen for inner versus outer horizons. In this appendix we shall seek to present a coherent overview of this topic. (In a somewhat similar vein, it has been known for some time that special things happen at wormhole throats [76].)

We find it convenient to work with static spacetimes in area coordinates:

$$\begin{aligned} ds^2 = -e^{-2{\varPhi }(r)}\left( 1-\frac{2m(r)}{r}\right) dt^2 + \frac{dr^2}{1-\frac{2m(r)}{r}} + r^2\,d{\varOmega }^2_{2}. \end{aligned}$$
(9.31)

The horizons are located at solutions (if any) of the equation \(r_H = 2 m(r_H)\). If we are dealing with a wormhole throat, we will need two coordinate systems of this type, carefully matched at the throat [114].

A purely geometrical result is that in a suitable orthonormal basis [114]

$$\begin{aligned} G_{\hat{t} \hat{t}} = {2m'(r)\over r^2}; \qquad \qquad G_{\hat{r} \hat{r}} = - {2m'(r)\over r^2}+ \left( 1-{2m(r)\over r} \right) {2{\varPhi }'(r)\over r}; \end{aligned}$$
(9.32)

Thence at any horizon (inner or outer, extremal or non-extremal) one has

$$\begin{aligned} G_{\hat{t} \hat{t}} + G_{\hat{r} \hat{r}} \quad \rightarrow \quad 0. \end{aligned}$$
(9.33)

This on-horizon “enhanced symmetry” for the Einstein (and Ricci) tensors is a recurring theme in near horizon physics [85]. Another useful and very general result is that the surface gravity is [113]:

$$\begin{aligned} \kappa _H = e^{-{\varPhi }(r_H)} \; {1-2m'(r_H) \over 2r_H }. \end{aligned}$$
(9.34)

An extremal horizon is characterized by the vanishing of the surface gravity which we see requires \(2m'(r_H)=1\).

At any extremal horizon (outer or inner) the Einstein tensor (and Ricci tensor) become particularly simple. Specifically

$$\begin{aligned} G_{\hat{t} \hat{t}|r_E} = - G_{\hat{r} \hat{r}|r_E} = {1\over r_E^2}; \qquad \qquad G_{\hat{\theta }\hat{\theta }|r_E} = G_{\hat{\phi }\hat{\phi }|r_E} = -{m''(r_E) \over r_E}. \end{aligned}$$
(9.35)

In fact at any extremal horizon all orthonormal components of the Riemann tensor are proportional to either \(1/r_E^2\), or \(m''(r_E) /r_E\), or are zero. Thence at any extremal horizon all of the polynomial curvature invariants are simply multi-nomial functions \(f(1/r_E^2,m''(r_E) /r_E)\) of these two quantities. Furthermore at any extremal horizon all nonzero orthonormal components of the Weyl tensor are simply miltiples the single quantity \((1+r_E m''(r_E))/r_E^2\). So the spacetime geometry simplifies quite drastically on any extremal horizon (either outer or inner).

Finally, what can we say about \(m''(r_E)\)? This will depend on how many non-extremal horizons merge to yield the extremal horizon of interest. If two non-extremal horizons merge then \(m''(r_E)\ne 0\); if three (or more) non-extremal horizons merge then \(m''(r_E)=0\). For instance in the extremal Reissner–Nordström geometry (where two horizons merge) we have \(m(r) = m - {1\over 2}q^2/r\) and at extremality we obtain \(m''(r_E)= -q^2/r_E^3 = -1/r_E < 0\). In contrast for the extremal inner horizons explored in Ref. [39] we have three merging horizons, m(r) is a rational quartic and it is easy to check that \(m''(r_E)=0\).

In short, although it is perhaps not all that well appreciated, geometrically it is guaranteed that very special things happen at all extremal horizons; and these special properties will have a role to play in both phenomenology and in stability analyses for RBHs.

Appendix 2: Light Rings

From the discussion above we have seen that interesting things happen for light rings in extremal, near-extremal, and super-extremal objects. See also [26, 78, 120]. That something unusual happens with light rings in the extremal limit can already be deduced from the very simple and explicit example of Reissner–Nordström spacetime. Since this situation already captures the key features of the discussion with an absolute minimum of fuss, we present some brief pedagogical comments here, before looking at the general situation.

Reissner–Nordström Light-Rings

The Reissner–Nordström spacetime in area coordinates is

$$\begin{aligned} d s^2 = -(1-2m/r+q^2/r^2) d t^2 +{d r^2\over 1-2m/r+q^2/r^2} + r^2d {\varOmega }^2 \end{aligned}$$
(9.36)

It is a quite standard result that in Reissner–Nordström spacetime the light rings can be found by inspecting the effective potential

$$\begin{aligned} V(r) = \left( 1-{2m\over r}+{q^2\over r^2} \right) \left( {L^2\over r^2}\right) \end{aligned}$$
(9.37)

The circular photon orbits are located at \(r_c\) such that \(V'(r_c)=0\), and stability depends on the sign of \(V''(r_c)\). If \(V''(r_c)>0\) then the light ring is stable; if \(V''(r_c)<0\) then the light ring is stable; if \(V''(r_c)=0\) then the light ring exhibits neutral (marginal) stability.

Unfortunately, the potential V(r) is not unique, a circumstance which can sometimes cause confusion. Indeed, let F(x) be any monotone increasing function and define \(\tilde{V}(r) = F(V(r))\). Then

$$\begin{aligned} \tilde{V}(r)' = F'(V(r)) \;V'(r); \qquad \tilde{V}(r)'' = F''(V(r))\; [V'(r)]^2 + F'(V(r)) \;V''(r). \end{aligned}$$
(9.38)

So the extrema \(r_c\) of V(r) coincide with extrema of \(\tilde{V}(r)\). Furthermore, at these extrema one has \(sign\{\tilde{V}''(r_c)\} = sign\{V''(r_c)\}\).

To locate the light rings we note

$$\begin{aligned} V'(r) = {2L^2\over r^5}(3mr-2q^2-r^2), \end{aligned}$$
(9.39)

and

$$\begin{aligned} V''(r) = {2L^2\over r^6}( 3r^2+10q^2-12mr). \end{aligned}$$
(9.40)

The outer and inner horizons are located at

$$\begin{aligned} r_H = m \pm \sqrt{m^2-q^2}. \end{aligned}$$
(9.41)

The outer and inner light rings are located at

$$\begin{aligned} r_c = {3m\over 2} \pm {\sqrt{9m^2-8q^2}\over 2}. \end{aligned}$$
(9.42)

Distinct inner and outer light rings exist for \(9m^2 > 8q^2\), and merge at \(9m^2 = 8q^2\). that is, beyond extremality. The light rings merge at \(r_c= {3m\over 2}\).

  • At the outer light ring

    $$\begin{aligned} V''(r_c) = - {64 L^2 \sqrt{9 m^2-8 q^2} \over (3m + \sqrt{9 m^2-8 q^2})^5 } < 0, \end{aligned}$$
    (9.43)

    so the outer light ring is always unstable.

  • At the inner light ring

    $$\begin{aligned} V''(r_c) = {64 L^2 \sqrt{9 m^2-8 q^2} \over (3m - \sqrt{9 m^2-8 q^2})^5 } > 0, \end{aligned}$$
    (9.44)

    so the inner light ring is always stable.

  • At \(r_c= {3m\over 2}\), where the light rings merge, \(9 m^2=8q^2\) so \(V''(r_c) = 0\), and the merged light ring exhibits neutral stability.

At extremality (\(m=|q|\)) the light rings are formally located at

$$\begin{aligned} r_c= {3m\over 2} \pm {m\over 2} = \{ m, 2m\}. \end{aligned}$$
(9.45)

Here \(r_c=2m\) corresponds to a true light ring, while \(r_c=m\) represents the light sheet defining the extremal horizon. (There is now no angular motion, so this is not a “ring”.) At extremality (\(m=|q|\)) for the outer light ring

$$\begin{aligned} r_c = 2m = 2 r_H; \qquad V''(r_c) \rightarrow -{ L^2 \over 16 m^4 } < 0. \end{aligned}$$
(9.46)

At extremality (\(m=|q|\)) for the inner light sheet

$$\begin{aligned} r_c=m= r_H; \qquad V''(r_c) \rightarrow +{ 2L^2 \over m^4 } > 0. \end{aligned}$$
(9.47)

So the extremal horizon is a stable light sheet. Perhaps counter-intuitively, the fact that the light sheet is stable will destabilize the spacetime—since the light sheet is stable, massless particles cam pile up there; eventually back-reaction will become large, and the spacetime detabilizes. The situation is summarized in Fig. 9.11.

The key observation here is that the Reissner–Nordström spacetime is already subtle enough to exhibit a stable light ring at extremality, and multiple light rings in a small region beyond extremality. This does have implications for more general RBHs, since one can always cut off the core of the Reissner–Nordström spacetime at some \(r_{core} < |q|\) and replace it with a Reissner–Nordström-inspired RBH that would then (by construction) exhibit exactly the same light rings as the Reissner–Nordström spacetime itself. In short, the existence of unstable light rings exterior to generic extremal black holes should not really come as a surprise.

Fig. 9.11
figure 11

Reissner–Nordström inner and outer horizons, and inner and outer light rings

Generic Light-Rings

What can we say about light rings in the generic case? We already have rather good intuition based on what we saw happening for Reissner–Nordström spacetime.

For any geometry of the form given in Eq. (9.31) it is easy to check that the effective potential governing the light rings is

$$\begin{aligned} V(r) = e^{-2{\varPhi }(r)} \left( 1-{2m(r)\over r}\right) {L^2\over r^2}. \end{aligned}$$
(9.48)

It is then easy to check that

$$\begin{aligned} V'(r) = e^{-2{\varPhi }(r)}\, {2L^2\over r^4}\, \left( \{3m(r)-r m'(r)-r\}- {\varPhi }'(r) r^2(1-2m(r)/r) \right) . \end{aligned}$$
(9.49)

Purely geometrically this leads to

$$\begin{aligned} V'(r) = e^{-2{\varPhi }(r)}\, {2L^2\over r^4}\, \{3m(r) -r + r^3 G_{\hat{r}\hat{r}}(r) \}. \end{aligned}$$
(9.50)

This can also be written as

$$\begin{aligned} V'(r) = e^{-2{\varPhi }(r)}\, {2L^2\over r^4}\, \{3m(r) -r -rm'(r) + r^3 [G_{\hat{t}\hat{t}}(r) + G_{\hat{r}\hat{r}}(r)] \}. \end{aligned}$$
(9.51)

Furthermore one can easily verify that

$$\begin{aligned} V''(r) = e^{-2{\varPhi }(r)} {2L^2\over r^5}\{3r-12m(r)+6 r m'(r) -r^2 m''(r)\} -2{\varPhi }'(r) V'(r) -2{\varPhi }''(r) V(r). \end{aligned}$$
(9.52)

Thence at any light ring that might be present the condition \(V'(r_c)=0\) implies

$$\begin{aligned} r_c = {3m(r_c) + r_c^3 [G_{\hat{t}\hat{t}}(r_c) + G_{\hat{r}\hat{r}}(r_c)] \over 1 - m'(r_c) } \end{aligned}$$
(9.53)

We now wish to self-consistently bound the location of possible solutions to this equation to determine whether a light ring exists for \(r_c > r_H\). The purely geometrical null convergence condition (guaranteeing the convergence of null geodesics), when applied to the radial null geodesics, would imply

$$\begin{aligned}{}[G_{\hat{t}\hat{t}}(r) + G_{\hat{r}\hat{r}}(r)] \ge 0. \end{aligned}$$
(9.54)

If the Misner-Sharp quasi-local mass is non-decreasing outside the horizon then this would imply \(m'(r) \ge 0\). Combining, if we assume the light ring exists, then its location is bounded below by:

$$\begin{aligned} r_c \ge 3m(r_c) \ge 3 m(r_H) = {3\over 2}\; r_H. \end{aligned}$$
(9.55)

To establish an upper bound we start from Eq. (9.50). Setting \(V'(r_c)\rightarrow 0\) yields

$$\begin{aligned} r_c = 3m(r_c) + r_c^3 G_{\hat{r}\hat{r}}(r_c) . \end{aligned}$$
(9.56)

Then from the DCC (dominant convergence condition): \(|G_{\hat{r}\hat{r}}| \le |G_{\hat{t}\hat{t}}| = {2m'/r^2}\) we see

$$\begin{aligned} r_c \le 3m(r_c) + 2 r_c m'(r_c). \end{aligned}$$
(9.57)

We need one more condition to get a useful bound: \((m(r)/r^3)' < 0\), implying \(m'(r) < 3 m(r)/r\). (This condition corresponds to the volume-averaged density decreasing as one moves outwards, and is a very popular condition used in building relativistic and Newtonian models.) Then

$$\begin{aligned} r_c \le 9m(r_c) \le 9 m_\infty . \end{aligned}$$
(9.58)

Overall, under plausible structural conditions, and assuming existence of the light ring, we have

$$\begin{aligned} {3\over 2} r_H \le r_c \le 9 m_\infty . \end{aligned}$$
(9.59)

However, proving actual existence of the light rings is slightly more subtle, and requires slightly different arguments for outer-non-extremal and outer-extremal horizons.

Outer Non-extremal Horizons

For an outer non-extremal horizon in terms of the surface gravity we can calculate

$$\begin{aligned} V'(r_H) = {2 L^2 e^{-{\varPhi }(r_H)} \; \kappa _H\over r_H^2} >0. \end{aligned}$$
(9.60)

On the other hand for an asymptotically flat geometry, at large r we will have \(m(r)=m_\infty +O(1/r)\) and \({\varPhi }(r)=O(1/r)\) whence asymptoticallyFootnote 4

$$\begin{aligned} V'(r) = -{2 L^2 \over r^3} + O\left( 1\over r^4\right) < 0. \end{aligned}$$
(9.61)

The sign flip guarantees that there will be at least one light ring somewhere between the outer horizon and spatial infinity.

Outer Extremal Horizons

For any extremal horizon we can calculate

$$\begin{aligned} V'(r_H) = 0; \qquad V''(r_H) = -{2L^2 e^{-2{\varPhi }(r_H)} m''(r_H)\over r_H^3}. \end{aligned}$$
(9.62)

If this is to be an outer extremal horizon then we must have \( m''(r_H)<0\) and so \(V''(r_H)>0\). But then \(V'(r)>0\) in the region immediately above the horizon. On the other hand, for any asymptotically flat geometry we still have

$$\begin{aligned} V'(r) = -{2 L^2 \over r^3} + O\left( 1\over r^4\right) < 0. \end{aligned}$$
(9.63)

The sign flip again guarantees that there will be at least one light ring somewhere between the outer horizon and spatial infinity.

Regular Horizonless Objects

For a regular horizonless object, (cf. a super-extremal Reissner–Nordstróm geometry with a regularized core at \(r_\textrm{core}< |q|\)), at short distances we would demand \(m(r)=O(r^3)\) and \({\varPhi }(r) = O(r^2)\). Consequently

$$\begin{aligned} V'(r) = -{2 L^2 \over r^3} + O\left( 1\right) < 0, \end{aligned}$$
(9.64)

while at large distances

$$\begin{aligned} V'(r) = -{2 L^2 \over r^3} + O\left( 1\over r^4\right) < 0. \end{aligned}$$
(9.65)

There is now no sign flip and consequently there must be an even number (possibly zero) of light rings.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carballo-Rubio, R., Di Filippo, F., Liberati, S., Visser, M. (2023). Singularity-Free Gravitational Collapse: From Regular Black Holes to Horizonless Objects. In: Bambi, C. (eds) Regular Black Holes. Springer Series in Astrophysics and Cosmology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1596-5_9

Download citation

Publish with us

Policies and ethics