Skip to main content

Black Holes in Asymptotically Safe Gravity and Beyond

  • Chapter
  • First Online:
Regular Black Holes

Part of the book series: Springer Series in Astrophysics and Cosmology ((SSAC))

Abstract

Asymptotically safe quantum gravity is an approach to quantum gravity that achieves formulating a standard quantum field theory for the metric. Therefore, even the deep quantum gravity regime, that is expected to determine the true structure of the core of black holes, is described by a spacetime metric. The essence of asymptotic safety lies in a new symmetry of the theory – quantum scale symmetry – which characterizes the short-distance regime of quantum gravity. It implies the absence of physical scales. Therefore, the Newton coupling, which corresponds to a scale, namely the Planck length, must vanish asymptotically in the short-distance regime. This implies a weakening of the gravitational interaction, from which a resolution of classical spacetime singularities can be expected. In practise, properties of black holes in asymptotically safe quantum gravity cannot yet be derived from first principles, but are constructed using a heuristic procedure known as Renormalization Group improvement. The resulting asymptotic-safety inspired black holes have been constructed both for vanishing and for nonvanishing spin parameter. They are characterized by (i) the absence of curvature singularities, (ii) a more compact event horizon and photon sphere, (iii) a second (inner) horizon even at vanishing spin and (iv) a cold remnant as a possible final product of the Hawking evaporation. Observations can start to constrain the quantum-gravity scale that can be treated as a free parameter in asymptotic-safety inspired black holes. For slowly-spinning black holes, constraints from the Event Horizon Telescope and X-ray observations can only constrain quantum-gravity scales far above the Planck length. In the limit of near-critical spin, asymptotic-safety inspired black holes may “light up” in a way the next-generation Event Horizon Telescope may be sensitive to, even for a quantum-gravity scale equalling the Planck length. Finally, a connection to gravitational-wave observations of the ringdown phase can currently only be established under very strong theoretical assumptions, due to a lack of a dynamical equation to which asymptotic-safety inspired black holes constitute a solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Attempts at formulating asymptotically safe gravity in terms of, e.g., the vielbein [64], the vielbein and the connection [34], a unimodular metric [44] or a generalized connection [62] also exist; however, metric gravity is by far the most explored of these options, see [97, 106] for textbooks and [8, 46, 49, 92, 98, 102] for reviews. The other options all start from theories which are classically equivalent to GR.

  2. 2.

    In technical language, we state here that a theory with quantum scale symmetry but without classical scale symmetry has at least one non-vanishing canonically relevant or irrelevant coupling and not just canonically marginal ones. Due to its canonical dimension, the coupling implicitly defines a mass scale.

  3. 3.

    There are exceptions to this argument, namely when a theory has vanishing mass parameters and the diverging mass scale is related to a relevant interaction. In that case quantum scale symmetry corresponds to a strongly-coupled regime.

  4. 4.

    Incidentally, this also implies that a “folk theorem” about the violation of global symmetries from quantum gravity may not be applicable to asymptotically safe quantum gravity.

  5. 5.

    In the above, one-loop examples, the scale-dependence of couplings on k agrees with that on \(\mu \), the RG scale that appears in perturbative renormalization.

  6. 6.

    We put “classical” in quotation marks, because it is not the \(\hslash \rightarrow 0\) regime – in nature, \(\hslash \rightarrow 0\) is at best an approximately observable limit – instead, the IR is the setting in which all quantum fluctuations in the path integral are present, and we are simply probing the effective action of the theory in its low-curvature regime.

  7. 7.

    Note that such constraints on \(g_{N,\, *}\) should not be misinterpreted as actual constraints on the fixed-point value. The latter is a non-universal quantity that is not directly accessible to measurements. It makes its way into observable quantities in the RG improvement procedure, because the procedure is an approximate one. Observations constrain a physical scale, namely the scale at which fixed-point scaling sets in. This scale depends on various couplings of the theory, but in our simple approximation it is only set by the fixed-point value of the Newton coupling.

  8. 8.

    More complete studies with higher-order gravitational couplings would have to start from black-hole solutions in corresponding higher-order theories, which are typically not known at all or only for small or vanishing spin.

  9. 9.

    We use the term ‘curvature invariants’ to refer to Riemann invariants, i.e., scalars built from contractions of any number of Riemann tensors and the metric. This does not include derivative invariants, i.e., those which involve additional covariant derivatives.

  10. 10.

    Heuristically, one can think of the non-zero energy-momentum tensor as a contribution on the left-hand-side of the generalized Einstein equations, i.e., a contribution from higher-order curvature terms which arise in asymptotically safe gravity.

  11. 11.

    The definition of the coordinates \((r,\,\theta )\) is equivalent in many of the standard coordinate systems for Kerr spacetime and, in particular, agrees with the \((r,\,\theta )\) as defined in ingoing Kerr and Boyer-Lindquist coordinates.

  12. 12.

    It has not been proven that the displayed invariants are polynomially independent, hence there could, in principle, be further polynomial relations among them.

  13. 13.

    Curvature invariants are finite, but not single-valued at \(r \rightarrow 0, \chi \rightarrow 0\). For \(r>0\), the spacetime is not geodesically complete and needs an extension to \(r<0\). There, the dependence on \(r^2\) (instead of r) in Eq. (5.58) ensures the absence of curvature singularities, see [110].

  14. 14.

    In the spherically-symmetric case, closed photon orbits can only arise at a 2-dimensional surface at fixed radius, cf. Sect. 5.4.3 – hence the name photon sphere. For stationary axisymmetric spacetimes and, in particular, for Kerr spacetime [2, 108], several classes of closed photon orbits can occur which cover an extended 3-dimensional region – hence, the name photon shell.

  15. 15.

    Consequences for black hole thermodynamics have not been explored yet.

  16. 16.

    Because Killing symmetries can be made manifest in the spacetime metric, RG improvement can always be made to respect Killing symmetries. However, any symmetry that is not a Killing symmetry, but instead only expressible as a condition on the Riemann tensor, need not be respected by the RG improvement.

  17. 17.

    See, however, [120] for a proof that circularity holds for black holes which are perturbatively connected to the Kerr solution.

  18. 18.

    The word ‘physical’ refers to physically realistic matter models [96, 119], see also the discussion below Eq. (5.65). The word ‘generic’ is important since non-generic initial conditions result in counter-examples to weak cosmic censorship [29], even in restricted sectors (spherically symmetric GR with a real massless scalar field) for which the mathematical conjecture has been proven [30].

  19. 19.

    Note that there are spacetimes which satisfy weak cosmic censorship in GR, but their RG-improved counterparts do not satisfy “quantum gravity censorship”: For instance, a Kerr-black hole, with sub-, but near-critical spin is an example, since its RG-improved counterpart can be horizonless, cf. [53] and Sect. 5.5.4.

  20. 20.

    Our simple RG-improvement procedure can of course not account for this possibility, because it starts from a unique starting point, namely a Kerr black hole.

  21. 21.

    An inclusion of such higher-order couplings for black holes would require the construction of spinning black-hole solutions in higher-curvature gravity, followed by an RG improvement. Due to the technical complexity of this task, it has not been attempted.

  22. 22.

    This reasoning does not invalidate effective field theory, because not all terms in the effective action remain low. Because perturbations become blueshifted, the kinetic terms describing perturbations of scalars/fermions/vectors/metric fluctuations become large, signalling the breakdown of effective field theory and the need for a quantum theory of gravity.

  23. 23.

    Whether or not a regular black hole can be overspun is not settled; see the discussion and references in [53].

  24. 24.

    For smaller mass, there is no longer an event horizon.

  25. 25.

    For which we are not aware of a reason why it should work beyond GR in the sense of upgrading a spherically symmetric solution of the theory to an axisymmetric solution; instead, beyond GR, it is just one particular way of reducing spherical symmetry to axisymmetry.

  26. 26.

    It is typically not made explicit.

References

  1. A. Adeifeoba, A. Eichhorn, A. Platania, Towards conditions for black-hole singularity-resolution in asymptotically safe quantum gravity. Class. Quant. Grav. 35(22), 225007 (2018). arXiv:1808.03472 [gr-qc]

  2. J.M. Bardeen, Timelike and null geodesics in the Kerr metric, in Black Holes (Les Astres Occlus) (1973), pp. 215–239

    Google Scholar 

  3. S. Basu, D. Mattingly, Asymptotic safety, asymptotic darkness, and the hoop conjecture in the extreme UV. Phys. Rev. D 82, 124017 (2010). arXiv:1006.0718 [hep-th]

  4. D. Benedetti, P.F. Machado, F. Saueressig, Asymptotic safety in higher-derivative gravity. Mod. Phys. Lett. A 24, 2233–2241 (2009). arXiv:0901.2984 [hep-th]

  5. S. Benenti, M. Francaviglia, Remarks on certain separability structures and their applications to general relativity. Gen. Relativ. Gravit 10(1), 79–92 (1979)

    Google Scholar 

  6. A. Bonanno, M. Reuter, Cosmology with selfadjusting vacuum energy density from a renormalization group fixed point. Phys. Lett. B 527, 9–17 (2002). arXiv:astro-ph/0106468

  7. A. Bonanno, M. Reuter, Spacetime structure of an evaporating black hole in quantum gravity. Phys. Rev. D 73, 083005 (2006). arXiv:hep-th/0602159

  8. A. Bonanno, A. Eichhorn, H. Gies, J.M. Pawlowski, R. Percacci, M. Reuter, F. Saueressig, G.P. Vacca, Critical reflections on asymptotically safe gravity. Front. Phys. 8, 269 (2020). arXiv:2004.06810 [gr-qc]

  9. A. Bonanno, A.-P. Khosravi, F. Saueressig, Regular black holes with stable cores. Phys. Rev. D 103(12), 124027 (2021). arXiv:2010.04226 [gr-qc]

  10. A. Bonanno, A.-P. Khosravi, F. Saueressig, Regular evaporating black holes with stable cores. arXiv:2209.10612 [gr-qc]

  11. A. Bonanno, B. Koch, A. Platania, Cosmic censorship in quantum Einstein gravity. Class. Quant. Grav. 34(9), 095012 (2017). arXiv:1610.05299 [gr-qc]

  12. A. Bonanno, B. Koch, A. Platania, Gravitational collapse in quantum Einstein gravity. Found. Phys. 48(10), 1393–1406 (2018). arXiv:1710.10845 [gr-qc]

  13. A. Bonanno, M. Reuter, Quantum gravity effects near the null black hole singularity. Phys. Rev. D 60, 084011 (1999). arXiv:gr-qc/9811026

  14. A. Bonanno, M. Reuter, Renormalization group improved black hole space-times. Phys. Rev. D 62, 043008 (2000). arXiv:hep-th/0002196

  15. H. Bondi, Spherically symmetrical models in general relativity. Mon. Not. R. Astron. Soc. 107(5-6), 410–425 (1947)

    Google Scholar 

  16. J.N. Borissova, A. Eichhorn, Towards black-hole singularity-resolution in the Lorentzian gravitational path integral. Universe 7(3), 48 (2021). arXiv:2012.08570 [gr-qc]

  17. J.N. Borissova, A. Held, N. Afshordi, Scale-invariance at the core of quantum black holes. arXiv:2203.02559 [gr-qc]

  18. J.N. Borissova, A. Platania, Formation and evaporation of quantum black holes from the decoupling mechanism in quantum gravity. arXiv:2210.01138 [gr-qc]

  19. A.E. Broderick et al., The photon ring in M87*. Astrophys. J. 935, 61 (2022). arXiv:2208.09004 [astro-ph.HE]

  20. R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio, M. Visser, On the viability of regular black holes. JHEP 07, 023 (2018). arXiv:1805.02675 [gr-qc]

  21. R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio, M. Visser, Inner horizon instability and the unstable cores of regular black holes. JHEP 05, 132 (2021). arXiv:2101.05006 [gr-qc]

  22. R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio, M. Visser, Regular black holes without mass inflation instability. JHEP 09, 118 (2022). arXiv:2205.13556 [gr-qc]

  23. R. Carballo-Rubio, F. Di Filippo, S. Liberati, M. Visser, Opening the Pandora’s box at the core of black holes. Class. Quant. Grav. 37(14), 14 (2020). arXiv:1908.03261 [gr-qc]

  24. V. Cardoso, P. Pani, J. Rico, On generic parametrizations of spinning black-hole geometries. Phys. Rev. D 89, 064007 (2014). arXiv:1401.0528 [gr-qc]

  25. J. Carminati, R.G. McLenaghan, Algebraic invariants of the Riemann tensor in a four-dimensional Lorentzian space. J. Math. Phys. 32(11), 3135–3140 (1991)

    Google Scholar 

  26. J. Carminati, E. Zakhary, Algebraic completeness for the invariants of the Riemann tensor, in The Ninth Marcel Grossmann Meeting. ed. by V.G. Gurzadyan, R.T. Jantzen, R. Ruffini (2002), pp.831–834

    Google Scholar 

  27. R. Casadio, S.D.H. Hsu, B. Mirza, Asymptotic safety, singularities, and gravitational collapse. Phys. Lett. B 695, 317–319 (2011). arXiv:1008.2768 [gr-qc]

  28. P. Chen, Y.C. Ong, D.-H. Yeom, Black hole remnants and the information loss paradox. Phys. Rept. 603, 1–45 (2015). arXiv:1412.8366 [gr-qc]

  29. M.W. Choptuik, Universality and scaling in gravitational collapse of a massless scalar field. Phys. Rev. Lett. 70, 9–12 (1993)

    Article  ADS  Google Scholar 

  30. D. Christodoulou, The instability of naked singularities in the gravitational collapse of a scalar field. Ann. Math. 149(1), 183–217 (1999). http://www.jstor.org/stable/121023

  31. D. Christodoulou, On the global initial value problem and the issue of singularities. Class. Quantum Gravity 16(12A), A23 (1999). https://doi.org/10.1088/0264-9381/16/12A/302

  32. S.R. Coleman, E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking. Phys. Rev. D 7, 1888–1910 (1973)

    Article  ADS  Google Scholar 

  33. J. Daas, K. Kuijpers, F. Saueressig, M.F. Wondrak, H. Falcke, Probing quadratic gravity with the event horizon telescope. arXiv:2204.08480 [gr-qc]

  34. J.E. Daum, M. Reuter, Renormalization group flow of the holst action. Phys. Lett. B 710, 215–218 (2012). arXiv:1012.4280 [hep-th]

  35. S. de Alwis, A. Eichhorn, A. Held, J.M. Pawlowski, M. Schiffer, F. Versteegen, Asymptotic safety, string theory and the weak gravity conjecture. Phys. Lett. B 798, 134991 (2019). arXiv:1907.07894 [hep-th]

  36. H. Delaporte, A. Eichhorn, A. Held, Parameterizations of black-hole spacetimes beyond circularity. Class. Quant. Grav. 39(13), 134002 (2022). arXiv:2203.00105 [gr-qc]

  37. F. Di Filippo, R. Carballo-Rubio, S. Liberati, C. Pacilio, M. Visser, On the inner horizon instability of non-singular black holes. Universe 8(4), 204 (2022). arXiv:2203.14516 [gr-qc]

  38. P. Donà, A. Eichhorn, R. Percacci, Matter matters in asymptotically safe quantum gravity. Phys. Rev. D 89(8), 084035 (2014). arXiv:1311.2898 [hep-th]

  39. J.F. Donoghue, General relativity as an effective field theory: the leading quantum corrections. Phys. Rev. D 50, 3874–3888 (1994). arXiv:gr-qc/9405057

  40. J.F. Donoghue, Leading quantum correction to the Newtonian potential. Phys. Rev. Lett. 72, 2996–2999 (1994). arXiv:gr-qc/9310024

  41. J.F. Donoghue, A critique of the asymptotic safety program. Front. Phys. 8, 56 (2020). arXiv:1911.02967 [hep-th]

  42. I. Dymnikova, Vacuum nonsingular black hole. Gen. Rel. Grav. 24, 235–242 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  43. W.E. East, F. Pretorius, Ultrarelativistic black hole formation. Phys. Rev. Lett. 110(10), 101101 (2013). arXiv:1210.0443 [gr-qc]

  44. A. Eichhorn, On unimodular quantum gravity. Class. Quant. Grav. 30, 115016 (2013). arXiv:1301.0879 [gr-qc]

  45. A. Eichhorn, The renormalization group flow of unimodular f(R) gravity. JHEP 04, 096 (2015). arXiv:1501.05848 [gr-qc]

  46. A. Eichhorn, Status of the asymptotic safety paradigm for quantum gravity and matter. Found. Phys. 48(10), 1407–1429 (2018). arXiv:1709.03696 [gr-qc]

  47. A. Eichhorn, An asymptotically safe guide to quantum gravity and matter. Front. Astron. Space Sci. 5, 47 (2019). arXiv:1810.07615 [hep-th]

  48. A. Eichhorn, Asymptotically safe gravity, in 57th International School of Subnuclear Physics: In Search for the Unexpected (2020). arXiv:2003.00044 [gr-qc]

  49. A. Eichhorn, Status update: asymptotically safe gravity-matter systems. Nuovo Cim. C 45(2), 29 (2022). arXiv:2201.11543 [gr-qc]

  50. A. Eichhorn, R. Gold, A. Held, Horizonless spacetimes as seen by present and next-generation event horizon telescope arrays. arXiv:2205.14883 [astro-ph.HE]

  51. A. Eichhorn, A. Held, From a locality-principle for new physics to image features of regular spinning black holes with disks. JCAP 05, 073 (2021). arXiv:2103.13163 [gr-qc]

  52. A. Eichhorn, A. Held, Image features of spinning regular black holes based on a locality principle. Eur. Phys. J. C 81(10), 933 (2021). arXiv:2103.07473 [gr-qc]

  53. A. Eichhorn, A. Held, Quantum gravity lights up spinning black holes. arXiv:2206.11152 [gr-qc]

  54. A. Eichhorn, A. Held, P.-V. Johannsen, Universal signatures of singularity-resolving physics in photon rings of black holes and horizonless objects. arXiv:2204.02429 [gr-qc]

  55. A. Eichhorn, M. Schiffer, Asymptotic safety of gravity with matter. arXiv:2212.07456 [hep-th]

  56. K. Falls, D.F. Litim, Black hole thermodynamics under the microscope. Phys. Rev. D 89, 084002 (2014). arXiv:1212.1821 [gr-qc]

  57. K. Falls, D.F. Litim, A. Raghuraman, Black holes and asymptotically safe gravity. Int. J. Mod. Phys. A 27, 1250019 (2012). arXiv:1002.0260 [hep-th]

  58. K. Falls, N. Ohta, R. Percacci, Towards the determination of the dimension of the critical surface in asymptotically safe gravity. Phys. Lett. B 810, 135773 (2020). arXiv:2004.04126 [hep-th]

  59. K.G. Falls, D.F. Litim, J. Schröder, Aspects of asymptotic safety for quantum gravity. Phys. Rev. D 99(12), 126015 (2019). arXiv:1810.08550 [gr-qc]

  60. J. Fehre, D.F. Litim, J.M. Pawlowski, M. Reichert, Lorentzian quantum gravity and the graviton spectral function. arXiv:2111.13232 [hep-th]

  61. H. Gies, B. Knorr, S. Lippoldt, F. Saueressig, Gravitational two-loop counterterm is asymptotically safe. Phys. Rev. Lett. 116(21), 211302 (2016). arXiv:1601.01800 [hep-th]

  62. H. Gies, A.S. Salek, Asymptotically safe Hilbert-Palatini gravity in an on-shell reduction scheme. arXiv:2209.10435 [hep-th]

  63. G. Gubitosi, R. Ooijer, C. Ripken, F. Saueressig, Consistent early and late time cosmology from the RG flow of gravity. JCAP 12, 004 (2018). arXiv:1806.10147 [hep-th]

  64. U. Harst, M. Reuter, The ‘Tetrad only’ theory space: nonperturbative renormalization flow and Asymptotic Safety. JHEP 05, 005 (2012). arXiv:1203.2158 [hep-th]

  65. S.A. Hayward, Formation and evaporation of regular black holes. Phys. Rev. Lett. 96, 031103 (2006). arXiv:gr-qc/0506126

  66. A. Held, Invariant renormalization-group improvement. arXiv:2105.11458 [gr-qc]

  67. A. Held, R. Gold, A. Eichhorn, Asymptotic safety casts its shadow. JCAP 06, 029 (2019). arXiv:1904.07133 [gr-qc]

  68. A. Held, H. Lim, Nonlinear dynamics of quadratic gravity in spherical symmetry. Phys. Rev. D 104(8), 084075 (2021). arXiv:2104.04010 [gr-qc]

  69. A. Held, J. Zhang, Instability of spherically-symmetric black holes in quadratic gravity. arXiv:2209.01867 [gr-qc]

  70. W.A. Hiscock, Models of Evaporating Black Holes. Phys. Rev. D 23, 2813 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  71. J. Jiang, Y. Gao, Investigating the gedanken experiment to destroy the event horizon of a regular black hole. Phys. Rev. D 101(8), 084005 (2020). arXiv:2003.07501 [hep-th]

  72. T. Johannsen, Regular black hole metric with three constants of motion. Phys. Rev. D 88(4), 044002 (2013). arXiv:1501.02809 [gr-qc]

  73. T. Johannsen, D. Psaltis, A metric for rapidly spinning black holes suitable for strong-field tests of the no-hair theorem. Phys. Rev. D 83, 124015 (2011). arXiv:1105.3191 [gr-qc]

  74. P.S. Joshi, D. Malafarina, Recent developments in gravitational collapse and spacetime singularities. Int. J. Mod. Phys. D 20, 2641–2729 (2011). arXiv:1201.3660 [gr-qc]

  75. B. Knorr, The derivative expansion in asymptotically safe quantum gravity: general setup and quartic order. SciPost Phys. Core 4, 020 (2021). arXiv:2104.11336 [hep-th]

  76. B. Knorr, A. Platania, Sifting quantum black holes through the principle of least action. Phys. Rev. D 106(2), L021901 (2022). arXiv:2202.01216 [hep-th]

  77. B. Koch, F. Saueressig, Structural aspects of asymptotically safe black holes. Class. Quant. Grav. 31, 015006 (2014). arXiv:1306.1546 [hep-th]

  78. G. Kofinas, V. Zarikas, Avoidance of singularities in asymptotically safe quantum Einstein gravity. JCAP 10, 069 (2015). arXiv:1506.02965 [hep-th]

  79. R.A. Konoplya, A.F. Zinhailo, J. Kunz, Z. Stuchlik, A. Zhidenko, Quasinormal ringing of regular black holes in asymptotically safe gravity: the importance of overtones. JCAP 10, 091 (2022). arXiv:2206.14714 [gr-qc]

  80. R. Konoplya, L. Rezzolla, A. Zhidenko, General parametrization of axisymmetric black holes in metric theories of gravity. Phys. Rev. D 93(6), 064015 (2016). arXiv:1602.02378 [gr-qc]

  81. R. Kumar, B.P. Singh, S.G. Ghosh, Shadow and deflection angle of rotating black hole in asymptotically safe gravity. Ann. Phys. 420, 168252 (2020). arXiv:1904.07652 [gr-qc]

  82. J.-L. Lehners, K.S. Stelle, A Safe Beginning for the Universe? Phys. Rev. D 100(8), 083540 (2019). arXiv:1909.01169 [hep-th]

  83. G. Lemaître, L’Univers en expansion. Annales de la Soci &eacute;t &eacute; Scientifique de Bruxelles 53, 51 (1933)

    Google Scholar 

  84. J. Li, Y. Zhong, Quasinormal modes for electromagnetic field perturbation of the asymptotic safe black hole. Int. J. Theor. Phys. 52, 1583–1587 (2013)

    Article  MathSciNet  Google Scholar 

  85. Z. Li, C. Bambi, Destroying the event horizon of regular black holes. Phys. Rev. D 87(12), 124022 (2013). arXiv:1304.6592 [gr-qc]

  86. D.F. Litim, K. Nikolakopoulos, Quantum gravity effects in Myers-Perry space-times. JHEP 04, 021 (2014). arXiv:1308.5630 [hep-th]

  87. D.-J. Liu, B. Yang, Y.-J. Zhai, X.-Z. Li, Quasinormal modes for asymptotic safe black holes. Class. Quant. Grav. 29, 145009 (2012). arXiv:1205.4792 [gr-qc]

  88. H. Lu, A. Perkins, C.N. Pope, K.S. Stelle, Black holes in higher-derivative gravity. Phys. Rev. Lett. 114(17), 171601 (2015). arXiv:1502.01028 [hep-th]

  89. H. Lü, A. Perkins, C.N. Pope, K.S. Stelle, Spherically symmetric solutions in higher-derivative gravity. Phys. Rev. D 92(12), 124019 (2015). arXiv:1508.00010 [hep-th]

  90. H. Lü, A. Perkins, C.N. Pope, K.S. Stelle, Lichnerowicz modes and black hole families in ricci quadratic gravity. Phys. Rev. D 96(4), 046006 (2017). arXiv:1704.05493 [hep-th]

  91. A. Papapetrou, Champs gravitationnels stationnaires a symetrie axiale. Ann. Inst. H. Poincare Phys. Theor. 4, 83–105 (1966)

    ADS  MATH  Google Scholar 

  92. J.M. Pawlowski, M. Reichert, Quantum gravity: a fluctuating point of view. Front. Phys. 8, 551848 (2021). arXiv:2007.10353 [hep-th]

  93. J.M. Pawlowski, D. Stock, Quantum-improved Schwarzschild-(A)dS and Kerr-(A)dS spacetimes. Phys. Rev. D 98(10), 106008 (2018). arXiv:1807.10512 [hep-th]

  94. R. Penrose, Gravitational collapse: the role of general relativity. Riv. Nuovo Cim. 1, 252–276 (1969)

    ADS  Google Scholar 

  95. R. Penrose, Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57–59 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  96. R. Penrose, The question of cosmic censorship. J. Astrophys. Astron. 20, 233–248 (1999)

    Article  ADS  Google Scholar 

  97. R. Percacci, An introduction to covariant quantum gravity and asymptotic safety, in 100 Years of General Relativity, vol. 3, (World Scientific, 2017)

    Google Scholar 

  98. A.D. Pereira, Quantum spacetime and the renormalization group: progress and visions, in Progress and Visions in Quantum Theory in View of Gravity: Bridging Foundations of Physics and Mathematics (2019). arXiv:1904.07042 [gr-qc]

  99. A. Platania, Dynamical renormalization of black-hole spacetimes. Eur. Phys. J. C 79(6), 470 (2019). arXiv:1903.10411 [gr-qc]

  100. J. Podolský, R. Švarc, V. Pravda, A. Pravdova, Black holes and other exact spherical solutions in quadratic gravity. Phys. Rev. D 101(2), 024027 (2020). arXiv:1907.00046 [gr-qc]

  101. V. Pravda, A. Pravdova, J. Podolsky, R. Svarc, Exact solutions to quadratic gravity. Phys. Rev. D 95(8), 084025 (2017). arXiv:1606.02646 [gr-qc]

  102. M. Reichert, Lecture notes: functional renormalisation group and asymptotically safe quantum gravity. PoS 384, 005 (2020)

    Google Scholar 

  103. M. Reuter, E. Tuiran, Quantum gravity effects in the Kerr spacetime. Phys. Rev. D 83, 044041 (2011). arXiv:1009.3528 [hep-th]

  104. M. Reuter, H. Weyer, Quantum gravity at astrophysical distances? JCAP 12, 001 (2004). arXiv:hep-th/0410119

  105. M. Reuter, H. Weyer, Renormalization group improved gravitational actions: a Brans-Dicke approach. Phys. Rev. D 69, 104022 (2004). arXiv:hep-th/0311196

  106. M. Reuter, F. Saueressig, Quantum Gravity and the Functional Renormalization Group: The Road towards Asymptotic Safety (Cambridge University Press, 2019)

    Google Scholar 

  107. A. Rincón, G. Panotopoulos, Quasinormal modes of an improved Schwarzschild black hole. Phys. Dark Univ. 30, 100639 (2020). arXiv:2006.11889 [gr-qc]

  108. E. Teo, Spherical photon orbits around a Kerr black hole. Gen Relativ Gravit 35(11), 1909–1926 (2003)

    Google Scholar 

  109. R.C. Tolman, Effect of inhomogeneity on cosmological models. Proc. Natl. Acad. Sci. 20(3), 169–176 (1934)

    Article  ADS  MATH  Google Scholar 

  110. R. Torres, Non-singular quantum improved rotating black holes and their maximal extension. Gen. Rel. Grav. 49(6), 74 (2017). arXiv:1702.03567 [gr-qc]

  111. R. Torres, F. Fayos, Singularity free gravitational collapse in an effective dynamical quantum spacetime. Phys. Lett. B 733, 169–175 (2014). arXiv:1405.7922 [gr-qc]

  112. R. Torres, Singularity-free gravitational collapse and asymptotic safety. Phys. Lett. B 733, 21–24 (2014). arXiv:1404.7655 [gr-qc]

  113. R. Torres, Nonsingular black holes, the cosmological constant, and asymptotic safety. Phys. Rev. D 95(12), 124004 (2017). arXiv:1703.09997 [gr-qc]

  114. R. Torres, F. Fayos, On the quantum corrected gravitational collapse. Phys. Lett. B 747, 245–250 (2015). arXiv:1503.07407 [gr-qc]

  115. E.A. Uehling, Polarization effects in the positron theory. Phys. Rev. 48, 55–63 (1935)

    Article  ADS  MATH  Google Scholar 

  116. P. Vaidya, The gravitational field of a radiating star. Proc. Natl. Inst. Sci. India A 33, 264 (1951)

    ADS  MathSciNet  MATH  Google Scholar 

  117. P.C. Vaidya, Nonstatic solutions of Einstein’s field equations for spheres of fluids radiating energy. Phys. Rev. 83, 10–17 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  118. P.C. Vaidya, An analytical solution for gravitational collapse with radiation. Astrophys. J. 144, 943 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  119. R.M. Wald, Gravitational collapse and cosmic censorship (1997), pp. 69–85. arXiv:gr-qc/9710068

  120. Y. Xie, J. Zhang, H.O. Silva, C. de Rham, H. Witek, N. Yunes, Square peg in a circular hole: choosing the right ansatz for isolated black holes in generic gravitational theories. Phys. Rev. Lett. 126(24), 241104 (2021). arXiv:2103.03925 [gr-qc]

  121. S.-J. Yang, Y.-P. Zhang, S.-W. Wei, Y.-X. Liu, Destroying the event horizon of a nonsingular rotating quantum-corrected black hole. JHEP 04, 066 (2022). arXiv:2201.03381 [gr-qc]

  122. E. Zakhary, C.B.G. McIntosh, A complete set of Riemann invariants. Gen. Relat. Gravit. 29(5), 539–581 (1997)

    Google Scholar 

  123. Y. Zhang, M. Zhou, C. Bambi, Iron line spectroscopy of black holes in asymptotically safe gravity. Eur. Phys. J. C 78(5), 376 (2018). arXiv:1804.07955 [gr-qc]

  124. B. Zhou, A.B. Abdikamalov, D. Ayzenberg, C. Bambi, S. Nampalliwar, A. Tripathi, Shining X-rays on asymptotically safe quantum gravity. JCAP 01, 047 (2021). arXiv:2005.12958 [astro-ph.HE]

  125. T. Zhou, L. Modesto, Geodesic incompleteness of some popular regular black holes. arXiv:2208.02557 [gr-qc]

  126. C.M. Chen, Y. Chen, A, Ishibashi, N, Ohta, D, Yamaguchi, Running Newton coupling, scale identification, and black hole thermodynamics. Phys. Rev. D 105 (10), 106026 (2022) arXiv:2204.09892 [hep-th], https://doi.org/10.1103/PhysRevD.105.106026

Download references

Acknowledgements

AE is supported by a research grant (29405) from VILLUM FONDEN. The work leading to this publication was supported by the PRIME programme of the German Academic Exchange Service (DAAD) with funds from the German Federal Ministry of Education and Research (BMBF). A. Held acknowledges support by the Deutsche Forschungsgemeinschaft (DFG) under Grant no 406116891 within the Research Training Group RTG 2522/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid Eichhorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eichhorn, A., Held, A. (2023). Black Holes in Asymptotically Safe Gravity and Beyond. In: Bambi, C. (eds) Regular Black Holes. Springer Series in Astrophysics and Cosmology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1596-5_5

Download citation

Publish with us

Policies and ethics