Skip to main content

Regular Black Holes from Higher-Derivative Effective Delta Sources

  • Chapter
  • First Online:
Regular Black Holes

Abstract

Certain approaches to quantum gravity and classical modified gravity theories result in effective field equations in which the original source is substituted by an effective one. In these cases, the occurrence of regular spacetime configurations may be related to the regularity of the effective source, regardless of the specific mechanism behind the regularization. In this chapter, we make an introduction to the effective source formalism applied to higher-derivative gravity. The results presented here, however, can be easily transposed to other frameworks that use similar sources. The generality obtained is also because we consider a general higher-derivative gravity model instead of restricting the analysis to some specific theories. In the first part, we discuss the model in the Newtonian limit, which offers a natural context for introducing effective sources. We show how the regularity properties of the effective sources depend on the behavior of the action’s form factor in the ultraviolet regime, which leads to results valid for large families of models (or for families of modified delta sources). Subsequently, we use the general results on the effective sources to construct regular black hole metrics. One of our concerns is the higher-order regularity of the solutions, i.e., the possibility that not only the invariants built with curvature tensors but also the ones with covariant derivatives are regular. In this regard, we present some theorems relating the regularity of sets of curvature-derivative invariants with the regularity properties of the effective sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ghosts should not be mistaken for tachyons, which are instead characterized by negative mass squared.

  2. 2.

    As the technical details regarding unitarity in these models lie beyond the scope of this text, we refer the interested reader to the original references mentioned above for further consideration.

  3. 3.

    In the action (4.10), we did not include total derivative terms since they do not contribute to the equations of motion, nor did we include the cosmological constant because it is irrelevant for metric perturbations around the Minkowski spacetime.

  4. 4.

    Since we only consider static solutions, the original d’Alembert operator \(\Box \) is substituted by the Laplacian \(\varDelta \). This avoids all the complications related to the choice of the appropriate Green function of the inverse operator in four-dimensional space with Lorentzian signature, especially for models with complex poles and nonlocalities (see, e.g., [22, 59] for further discussion).

  5. 5.

    Since the function \(g_s(r)\) is related to the gravitational force exerted on a test particle, this can be interpreted in the following way: If \(f_s(-k^2)\) grows at least as fast as \(k^4\) for large k, the force vanishes linearly as \(r\rightarrow 0\), for \(g_s(r) = O(r)\); on the other hand, in the case of \(f_s(-k^2) \sim k^2\) asymptotically, \(g_s(0) \ne 0\) and the force is finite (but nonzero) at \(r=0\).

  6. 6.

    For the evaluation of the potential with more complicated functions, see, e.g., [15, 30, 33] and, in particular, [14, 20, 37], for considerations regarding the effective source.

  7. 7.

    Notice that (4.127) is valid also for \(a(-k^2) \sim k^2\), which is not covered by Theorem 4.7. Indeed, in this case \(\varphi (r)\) and A(r) are 0-regular, but not 1-regular; yet, \(A(0)=1\) because \(r\varphi ^\prime (r) = O(r)\).

  8. 8.

    In addition, the position of the event horizon is bounded by the Schwarzschild radius, \(r_+ \leqslant r_\textrm{s} = 2GM\), because in this example \(m(r) \leqslant M\).

References

  1. A. Accioly, B.L. Giacchini, I.L. Shapiro, Low-energy effects in a higher-derivative gravity model with real and complex massive poles. Phys. Rev. D 96, 104004 (2017). arXiv:1610.05260

  2. A. Accioly, B.L. Giacchini, I.L. Shapiro, On the gravitational seesaw in higher-derivative gravity. Eur. Phys. J. C 77, 540 (2017). arXiv:1604.07348

  3. D. Anselmi, On the quantum field theory of the gravitational interactions. J. High Energy Phys. 06, 086 (2017). arXiv:1704.07728

  4. D. Anselmi, M. Piva, Perturbative unitarity of Lee-Wick quantum field theory. Phys. Rev. D 96, 045009 (2017). arXiv:1703.05563

  5. M. Asorey, J.L. López, I.L. Shapiro, Some remarks on high derivative quantum gravity. Int. J. Mod. Phys. A 12, 5711 (1997). arXiv:hep-th/9610006

  6. C. Bambi, L. Modesto, Y. Wang, Lee-Wick black holes. Phys. Lett. B 764, 306 (2017). arXiv:1611.03650

  7. K.J. Barnes, Lagrangian theory for the second-rank tensor field. J. Math. Phys. 6, 788 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. C.M. Bender, P.D. Mannheim, No-ghost theorem for the fourth-order derivative Pais-Uhlenbeck oscillator model. Phys. Rev. Lett. 100, 110402 (2008). arXiv:0706.0207

  9. C.M. Bender, P.D. Mannheim, Exactly solvable PT-symmetric Hamiltonian having no Hermitian counterpart. Phys. Rev. D 78, 025022 (2008). arXiv:0804.4190

  10. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, England, 1982)

    Book  MATH  Google Scholar 

  11. T. Biswas, E. Gerwick, T. Koivisto, A. Mazumdar, Towards singularity and ghost free theories of gravity. Phys. Rev. Lett. 108, 031101 (2012). arXiv:1110.5249

  12. A. Bonanno, S. Silveravalle, Characterizing black hole metrics in quadratic gravity. Phys. Rev. D 99, 101501 (2019). arXiv:1903.08759

  13. A. Bonanno, S. Silveravalle, The gravitational field of a star in quadratic gravity. J. Cosmol. Astropart. Phys. 08, 050 (2021). arXiv:2106.00558

  14. J. Boos, Gravitational Friedel oscillations in higher-derivative and infinite-derivative gravity? Int. J. Mod. Phys. D 27, 1847022 (2018). arXiv:1804.00225

  15. J. Boos, V.P. Frolov, A. Zelnikov, Gravitational field of static \(p\)-branes in linearized ghost-free gravity. Phys. Rev. D 97, 084021 (2018). arXiv:1802.09573

  16. J.N. Borissova, A. Eichhorn, Towards black-hole singularity-resolution in the Lorentzian gravitational path integral. Universe 7, 48 (2021). arXiv:2012.08570

  17. I.L. Buchbinder, I.L. Shapiro, Introduction to Quantum Field Theory with Applications to Quantum Gravity (Oxford University Press, Oxford, England, 2021)

    Book  MATH  Google Scholar 

  18. L. Buoninfante, B.L. Giacchini, Light bending by a slowly rotating source in quadratic theories of gravity. Phys. Rev. D 102, 024020 (2020). arXiv:2005.05355

  19. N. Burzillà, B.L. Giacchini, T. de Paula Netto, L. Modesto, Newtonian potential in higher-derivative quantum gravity. Phys. Rev. D 103, 064080 (2021). arXiv:2012.06254

  20. N. Burzillà, B.L. Giacchini, T. de Paula Netto, L. Modesto, Higher-order regularity in local and nonlocal quantum gravity. Eur. Phys. J. C 81, 462 (2021). arXiv:2012.11829

  21. Y.F. Cai, G. Cheng, J. Liu, M. Wang, H. Zhang, Features and stability analysis of non-Schwarzschild black hole in quadratic gravity. J. High Energy Phys. 01, 108 (2016). arXiv:1508.04776

  22. G. Calcagni, Taming the beast: diffusion method in nonlocal gravity. Universe 4, 95 (2018); [erratum: Universe 5, 121 (2019)]. arXiv:1809.04292

  23. S.M. Christensen, M.J. Duff, Quantizing gravity with a cosmological constant. Nucl. Phys. B 170, 480 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. T. de Paula Netto, L. Modesto, I.L. Shapiro, Universal leading quantum correction to the Newton potential. Eur. Phys. J. C 82, 160 (2022). arXiv:2110.14263

  25. S. Deser, A.N. Redlich, String induced gravity and ghost freedom. Phys. Lett. B 176, 350 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  26. S. Deser, P. van Nieuwenhuisen, One-loop divergences of quantized Einstein-Maxwell fields. Phys. Rev. D 10, 401 (1974)

    Article  ADS  Google Scholar 

  27. S. Deser, R.P. Woodard, Nonlocal cosmology. Phys. Rev. Lett. 99, 111301 (2007). arXiv:0706.2151

  28. J.F. Donoghue, G. Menezes, Unitarity, stability and loops of unstable ghosts. Phys. Rev. D 100, 105006 (2019). arXiv:1908.02416

  29. A. Eddington, The Mathematical Theory of Relativity (Cambridge University Press, Cambridge, England, 1924)

    MATH  Google Scholar 

  30. J. Edholm, A.S. Koshelev, A. Mazumdar, Behavior of the Newtonian potential for ghost-free gravity and singularity-free gravity. Phys. Rev. D 94, 104033 (2016). arXiv:1604.01989

  31. V.P. Frolov, Mass-gap for black hole formation in higher derivative and ghost free gravity. Phys. Rev. Lett. 115, 051102 (2015). arXiv:1505.00492

  32. V.P. Frolov, G.A. Vilkovisky, Spherically symmetric collapse in quantum gravity. Phys. Lett. B 106, 307 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  33. V.P. Frolov, A. Zelnikov, Head-on collision of ultrarelativistic particles in ghost-free theories of gravity. Phys. Rev. D 93, 064048 (2016). arXiv:1509.03336

  34. V.P. Frolov, A. Zelnikov, T. de Paula Netto, Spherical collapse of small masses in the ghost-free gravity. J. High Energy Phys. 06, 107 (2015). arXiv:1504.00412

  35. B.L. Giacchini, On the cancellation of Newtonian singularities in higher-derivative gravity. Phys. Lett. B 766, 306 (2017). arXiv:1609.05432

  36. B.L. Giacchini, T. de Paula Netto, Weak-field limit and regular solutions in polynomial higher-derivative gravities. Eur. Phys. J. C 79, 217 (2019). arXiv:1806.05664

  37. B.L. Giacchini, T. de Paula Netto, Effective delta sources and regularity in higher-derivative and ghost–free gravity. J. Cosmol. Astropart. Phys. 1907, 013 (2019). arXiv:1809.05907

  38. B.L. Giacchini, T. de Paula Netto, L. Modesto, Action principle selection of regular black holes. Phys. Rev. D 104, 084072 (2021). arXiv:2105.00300

  39. M.H. Goroff, A. Sagnotti, Quantum gravity at two loops. Phys. Lett. B 160, 81 (1985)

    Article  ADS  Google Scholar 

  40. S.A. Hayward, Formation and evaporation of regular black holes. Phys. Rev. Lett. 96, 031103 (2006). arXiv:gr-qc/0506126

  41. B. Holdom, On the fate of singularities and horizons in higher derivative gravity. Phys. Rev. D 66, 084010 (2002). arXiv:hep-th/0206219

  42. B. Holdom, 2-2-holes simplified. Phys. Lett. B 830, 137142 (2022). arXiv:2202.08442

  43. B. Holdom, J. Ren, Not quite a black hole. Phys. Rev. D 95, 084034 (2017). arXiv:1612.04889

  44. M. Isi, J. Mureika, P. Nicolini, Self-completeness and the generalized uncertainty principle. J. High Energy Phys. 11, 139 (2013). arXiv:1310.8153

  45. N.V. Krasnikov, Nonlocal Gauge theories. Theor. Math. Phys. 73, 1184 (1987) [Teor. Mat. Fiz. 73, 235 (1987)]

    Google Scholar 

  46. Yu.V. Kuz’min, Finite nonlocal gravity. Sov. J. Nucl. Phys. 50, 1011 (1989) [Yad. Fiz. 50, 1630 (1989)]

    Google Scholar 

  47. H. Lü, A. Perkins, C.N. Pope, K.S. Stelle, Black holes in higher-derivative gravity. Phys. Rev. Lett. 114, 171601 (2015). arXiv:1502.01028

  48. H. Lü, A. Perkins, C.N. Pope, K.S. Stelle, Spherically symmetric solutions in higher-derivative gravity. Phys. Rev. D 92, 124019 (2015). arXiv:1508.00010

  49. M. Maggiore, Nonlocal infrared modifications of gravity. A review. Fundam. Theor. Phys. 187, 221 (2017). arXiv:1606.08784

  50. L. Modesto, Super-renormalizable quantum gravity. Phys. Rev. D 86, 044005 (2012). arXiv:1107.2403

  51. L. Modesto, Super-renormalizable or finite Lee-Wick quantum gravity. Nucl. Phys. B 909, 584 (2016). arXiv:1602.02421

  52. L. Modesto, L. Rachwał, Super-renormalizable and finite gravitational theories. Nucl. Phys. B 889, 228 (2014). arXiv:1407.8036

  53. L. Modesto, I.L. Shapiro, Superrenormalizable quantum gravity with complex ghosts. Phys. Lett. B 755, 279 (2016). arXiv:1512.07600

  54. L. Modesto, J.W. Moffat, P. Nicolini, Black holes in an ultraviolet complete quantum gravity. Phys. Lett. B 695, 397 (2011). (arXiv:1010.0680)

    Article  ADS  MathSciNet  Google Scholar 

  55. L. Modesto, T. de Paula Netto, I.L. Shapiro, On Newtonian singularities in higher derivative gravity models. J. High Energy Phys. 04, 098 (2015). arXiv:1412.0740

  56. P. Nicolini, E. Spallucci, Noncommutative geometry inspired wormholes and dirty black holes. Class. Quant. Grav. 27, 015010 (2010). arXiv:0902.4654

  57. P. Nicolini, A. Smailagic, E. Spallucci, Noncommutative geometry inspired Schwarzschild black hole. Phys. Lett. B 632, 547 (2006). (arXiv:gr-qc/0510112)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. P. Nicolini, E. Spallucci, M.F. Wondrak, Quantum corrected black holes from string t-duality. Phys. Lett. B 797, 134888 (2019). arXiv:1902.11242

  59. A. Pais, G.E. Uhlenbeck, On Field theories with nonlocalized action. Phys. Rev. 79, 145 (1950)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. J. Podolsky, R. Svarc, V. Pravda, A. Pravdova, Explicit black hole solutions in higher-derivative gravity. Phys. Rev. D 98, 021502 (2018). arXiv:1806.08209

  61. I. Quandt, H.J. Schmidt, The Newtonian limit of fourth and higher order gravity. Astron. Nachr. 312, 97 (1991). arXiv:gr-qc/0109005

  62. R.J. Rivers, Lagrangian theory for neutral massive spin-2 fields. Nuovo Cimento 34, 386 (1964)

    Article  MathSciNet  Google Scholar 

  63. K.S. Stelle, Renormalization of higher derivative quantum gravity. Phys. Rev. D 16, 953 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  64. K.S. Stelle, Classical gravity with higher derivatives. Gen. Rel. Grav. 9, 353 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  65. R. Svarc, J. Podolsky, V. Pravda, A. Pravdova, Exact black holes in quadratic gravity with any cosmological constant. Phys. Rev. Lett. 121, 231104 (2018). arXiv:1806.09516

  66. E.T. Tomboulis, Superrenormalizable gauge and gravitational theories. arXiv:hep-th/9702146

  67. G. ’t Hooft, M. Veltman, One loop divergencies in the theory of gravitation. Ann. Inst. H. Poincaré Phys. Theor. A 20, 69 (1974)

    ADS  MathSciNet  MATH  Google Scholar 

  68. A.A. Tseytlin, On singularities of spherically symmetric backgrounds in string theory. Phys. Lett. B 363, 223 (1995). (arXiv:hep-th/9509050)

    Article  ADS  MathSciNet  Google Scholar 

  69. Y. Zhang, Y. Zhu, L. Modesto, C. Bambi, Can static regular black holes form from gravitational collapse? Eur. Phys. J. C 75, 96 (2015). (arXiv:1404.4770)

    Article  ADS  Google Scholar 

  70. V.A. Zorich, Mathematical Analysis II (Springer, Berlin, Heidelberg, 2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Breno L. Giacchini or Tibério de Paula Netto .

Editor information

Editors and Affiliations

Appendix

Appendix

Here we list the main formulas needed in Sect. 4.3, following the expansion (4.11). For the metric inverse and determinant, we have

$$\begin{aligned} g^{\mu \nu }= & {} \eta ^{\mu \nu } - h^{\mu \nu } + h^{\mu \lambda } h_{\lambda }^{\nu } + O(h_{\ldots }^3) , \end{aligned}$$
(4.142)
$$\begin{aligned} \sqrt{-g}= & {} 1 + \frac{1}{2} h - \frac{1}{4} h_{\mu \nu }^2 + \frac{1}{8} h^2 + O(h_{\ldots }^3) , \end{aligned}$$
(4.143)

where \(h = \eta ^{\mu \nu } h_{\mu \nu }\). As explained in Sect. 4.3, to obtain the bilinear part in \(h_{\mu \nu }\) of the action (4.10) we need the Riemann and Ricci tensors only in the first order,

$$\begin{aligned} R^\alpha {}_{\beta \mu \nu }= & {} \frac{1}{2} \, ( \partial _\mu \partial _\beta h^\alpha _\nu - \partial _\nu \partial _\beta h^\alpha _\mu + \partial _\nu \partial ^\alpha h_{\beta \mu } - \partial _\mu \partial ^\alpha h_{\beta \nu } ) + O(h_{\ldots }^2) \,, \end{aligned}$$
(4.144)
$$\begin{aligned} R_{\mu \nu }= & {} \frac{1}{2}\, ( \partial _\lambda \partial _\mu h^{\lambda }_\nu + \partial _\lambda \partial _\nu h^{\lambda }_\mu - \Box h_{\mu \nu } - \partial _\mu \partial _\nu h ) + O(h_{\ldots }^2) \,, \end{aligned}$$
(4.145)

and the scalar curvature up to \(O(h_{\ldots }^2)\), because of the term linear in R in (4.10),

$$\begin{aligned} R = R^{(1)} + R^{(2)} + O(h_{\ldots }^3) , \end{aligned}$$
(4.146)

where

$$\begin{aligned} R^{(1)}= & {} \partial _\alpha \partial _\beta h^{\alpha \beta } - \Box h, \end{aligned}$$
(4.147)
$$\begin{aligned} R^{(2)}= & {} h^{\alpha \beta } (\Box h_{\alpha \beta } + \partial _\alpha \partial _\beta h - 2 \partial _\alpha \partial _\lambda h^{\lambda }_\beta ) + \frac{3}{4}\, \partial _\lambda h_{\alpha \beta } \partial ^\lambda h^{\alpha \beta } \nonumber \\{} & {} - \frac{1}{2}\, \partial _\alpha h_{\lambda \beta } \partial ^\beta h^{\alpha \lambda } - (\partial _\rho h^\rho _\lambda - \tfrac{1}{2} \partial _\lambda h) (\partial _\sigma h^{\sigma \lambda } - \tfrac{1}{2} \partial ^\lambda h) . \end{aligned}$$
(4.148)

With these expressions one can derive the quadratic part of the terms in the action. Integrating by parts and ignoring unimportant surface terms, we get

$$\begin{aligned} \left[ \sqrt{-g}\, R \right] ^{(2)} = \frac{1}{4}\, h^{\mu \nu } \Box h_{\mu \nu } - \frac{1}{4} h \Box h + \frac{1}{2} h^{\mu \nu } \partial _\mu \partial _\nu h&- \frac{1}{2}\, h^{\mu \nu } \partial _\mu \partial _\lambda h^{\lambda }_\nu , \end{aligned}$$
(4.149)
$$\begin{aligned} \left[ \sqrt{-g}\, R F(\Box ) R \right] ^{(2)}= & {} h F(\Box ) \Box ^2 h - 2 h^{\mu \nu } F(\Box ) \Box \partial _\mu \partial _\nu h \nonumber \\{} & {} + h^{\mu \nu } F(\Box ) \partial _\mu \partial _\nu \partial _\alpha \partial _\beta h^{\alpha \beta } \,, \end{aligned}$$
(4.150)
$$\begin{aligned} \left[ \sqrt{-g}\, R_{\mu \nu } F(\Box ) R^{\mu \nu } \right] ^{(2)}= & {} \frac{1}{4} h_{\mu \nu } F(\Box ) \Box ^2 h^{\mu \nu } + \frac{1}{4} h F(\Box ) \Box ^2 h \nonumber \\{} & {} - \frac{1}{2} h^{\mu \nu } F(\Box ) \Box \partial _\mu \partial _\nu h - \frac{1}{2} h^{\mu \nu } F(\Box ) \Box \partial _\mu \partial _\lambda h^{\lambda }_\nu \nonumber \\{} & {} + \frac{1}{2} h^{\mu \nu } F(\Box ) \partial _\mu \partial _\nu \partial _\alpha \partial _\beta h^{\alpha \beta } \,, \end{aligned}$$
(4.151)
$$\begin{aligned} \left[ \sqrt{-g}\, R_{\mu \nu \alpha \beta } F(\Box ) R^{\mu \nu \alpha \beta } \right] ^{(2)}= & {} h_{\mu \nu } F(\Box ) \Box ^2 h^{\mu \nu } - 2 h^{\mu \nu } F(\Box ) \Box \partial _\mu \partial _\lambda h^{\lambda }_\nu \nonumber \\{} & {} + h^{\mu \nu } F(\Box ) \partial _\mu \partial _\nu \partial _\alpha \partial _\beta h^{\alpha \beta } . \end{aligned}$$
(4.152)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giacchini, B.L., de Paula Netto, T. (2023). Regular Black Holes from Higher-Derivative Effective Delta Sources. In: Bambi, C. (eds) Regular Black Holes. Springer Series in Astrophysics and Cosmology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1596-5_4

Download citation

Publish with us

Policies and ethics