Skip to main content

Semi-classical Dust Collapse and Regular Black Holes

  • Chapter
  • First Online:
Regular Black Holes

Part of the book series: Springer Series in Astrophysics and Cosmology ((SSAC))

Abstract

Semi-classical corrections at large curvature are employed in toy models of spherically symmetric gravitational collapse in order to avoid the formation of singularities. The resulting spacetimes may produce bounces, compact remnants or regular black holes in place of the usual Schwarzschild black hole. Within these models, a whole class of collapse scenarios leading to the formation of regular black holes may be obtained from General Relativity coupled to some theory of non-linear electrodynamics. In the present chapter we provide a thorough exposition of semi-classical dust collapse with particular attention to the conditions for the formation of regular black holes as the endstate of collapse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Notice that \(j(q)=0\) in this case.

References

  1. A. Ashtekar, T. Pawlowski, P. Singh, Phys. Rev. D 73, 124038 (2006)

    ADS  MathSciNet  Google Scholar 

  2. A. Ashtekar, T. Pawlowski, P. Singh, Phys. Rev. D 74, 084003 (2006)

    ADS  MathSciNet  Google Scholar 

  3. E. Ayón-Beato, A. Garcia, Phys. Rev. Lett. 80, 5056 (1998)

    ADS  Google Scholar 

  4. E. Ayón-Beato, A. Garcia, Phys. Lett. B 464, 25 (1999)

    ADS  MathSciNet  Google Scholar 

  5. E. Ayón-Beato, A. Garcia, Phys. Lett. B 493, 149 (2000)

    ADS  MathSciNet  Google Scholar 

  6. C. Bambi, L. Modesto, Phys. Lett. B 721, 329 (2013)

    ADS  MathSciNet  Google Scholar 

  7. C. Bambi, D. Malafarina, L. Modesto, Phys. Rev. D 88, 044009 (2013)

    ADS  Google Scholar 

  8. C. Barcelò, M. Visser, Int. J. Mod. Phys. D 11, 1553 (2002)

    ADS  Google Scholar 

  9. C. Barcelò, S. Liberati, S. Sonego, M. Visser, Phys. Rev. D 77, 044032 (2008)

    ADS  Google Scholar 

  10. J.M. Bardeen, in: Conference Proceedings of GR5, Tbilisi, USSR, 174 (1968)

    Google Scholar 

  11. F. Benìtez, R. Gambini, L. Lehner, S. Liebling, J. Pullin, Phys. Rev. Lett. 124, 071301 (2020)

    ADS  MathSciNet  Google Scholar 

  12. M. Bojowald, T. Harada, R. Tibrewala, Phys. Rev. D 78, 064057 (2008)

    ADS  MathSciNet  Google Scholar 

  13. M. Bojowald, Phys. Rev. Lett. 86, 5227 (2001)

    ADS  MathSciNet  Google Scholar 

  14. M. Bojowald, Phys. Rev. Lett. 95, 061301 (2005)

    ADS  MathSciNet  Google Scholar 

  15. M. Bojowald, R. Goswami, R. Maartens, P. Singh, Phys. Rev. Lett. 95, 091302 (2005)

    ADS  MathSciNet  Google Scholar 

  16. H. Bondi, Mon. Not. Astron. Soc. 107, 343 (1947)

    Google Scholar 

  17. I. Booth, Can. J. Phys. 83, 1073 (2005)

    ADS  Google Scholar 

  18. S. Brahma, C.-Y. Chen, D.-H. Yeom, Phys. Rev. Lett. 126, 181301 (2021)

    ADS  Google Scholar 

  19. K.A. Bronnikov, Phys. Rev. Lett. 85, 4641 (2000)

    ADS  Google Scholar 

  20. K.A. Bronnikov, Phys. Rev. D 63, 044005 (2001)

    ADS  MathSciNet  Google Scholar 

  21. K.A. Bronnikov, Phys. Rev. D 96, 128501 (2017)

    ADS  MathSciNet  Google Scholar 

  22. S. Chandrasekhar, An Introduction to the Study of Stellar Structure (The University of Chicago press, Chicago, USA, 1939)

    Google Scholar 

  23. S. Datt, Z. Phys. 108, 314 (1938)

    ADS  Google Scholar 

  24. I. Dymnikova Class. Quantum Grav. 19, 725 (2002)

    Google Scholar 

  25. Z.-Y. Fan, X. Wang, Phys. Rev. D 94, 124027 (2016)

    ADS  MathSciNet  Google Scholar 

  26. F. Fayos, X. Jaen, E. Llanta, J.M.M. Senovilla, Phys. Rev. D 45, 2732 (1992)

    ADS  MathSciNet  Google Scholar 

  27. F. Fayos, J.M.M. Senovilla, R. Torres, Phys. Rev. D 54, 4862 (1996)

    ADS  MathSciNet  Google Scholar 

  28. D. Finkelstein, Phys. Rev. 110, 965 (1958)

    ADS  Google Scholar 

  29. V.P. Frolov, Phys. Rev. D 94, 104056 (2016)

    ADS  MathSciNet  Google Scholar 

  30. V.P. Frolov, G.A. Vilkovisky, Phys. Lett. B 106, 307 (1981)

    ADS  MathSciNet  Google Scholar 

  31. R. Gambini, J. Pullin, Phys. Rev. Lett. 110, 211301 (2013)

    ADS  Google Scholar 

  32. D. Garfinkle, J.M.M. Senovilla, Class. Quantum Grav. 32, 124008 (2015)

    ADS  Google Scholar 

  33. R. Goswami, P.S. Joshi, P. Singh, Phys. Rev. Lett. 96, 031302 (2006)

    ADS  Google Scholar 

  34. S.W. Hawking, R. Penrose, Proc. Roy. Soc. Lond. A 314, 529 (1970)

    ADS  Google Scholar 

  35. S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, UK, 1973)

    MATH  Google Scholar 

  36. S.A. Hayward, Phys. Rev. D 49, 6467 (1994)

    ADS  MathSciNet  Google Scholar 

  37. S.A. Hayward, Phys. Rev. Lett. 96, 031103 (2006)

    ADS  Google Scholar 

  38. C. Hellaby, K. Lake, Astrophys. J. 290, 381 (1985)

    ADS  Google Scholar 

  39. C. Hellaby, K. Lake, Astrophys. J. 300, 461 (1986)

    ADS  Google Scholar 

  40. A. Helou, I. Musco, J.C. Miller, Class. Quantum Grav. 34, 135012 (2017)

    Google Scholar 

  41. S. Hossenfelder, L. Modesto, I. Prémont-Schwarz, Phys. Rev. D 81, 044036 (2010)

    ADS  Google Scholar 

  42. W. Israel, Nuovo Cimento B 44, 1 (1966); Nuovo Cimento B 48, 463 (1966)

    Google Scholar 

  43. P.S. Joshi, Gravitational Collapse and Spacetime Singularities (Cambridge University Press, Cambridge, UK, 2008)

    Google Scholar 

  44. P.S. Joshi, I.H. Dwivedi, Class. Quantum Grav. 9, L69 (1992)

    Google Scholar 

  45. P.S. Joshi, I.H. Dwivedi, Phys. Rev. D 47, 5357 (1993)

    ADS  Google Scholar 

  46. P.S. Joshi, I.H. Dwivedi, Class. Quantum Grav. 16, 41 (1999)

    ADS  Google Scholar 

  47. P.S. Joshi, D. Malafarina, Int. J. Mod. Phys. D 20, 2641 (2011)

    ADS  Google Scholar 

  48. J. Kijowski, E. Czuchry, Class. Quantum Grav. 27, 235007 (2010)

    ADS  Google Scholar 

  49. G. Lemaìtre, Ann. Soc. Sci. Bruxelles I, A 53, 51 (1933); Gen. Rel. Grav. 29, 641 (1997)

    Google Scholar 

  50. Y. Liu, D. Malafarina, L. Modesto, C. Bambi, Phys. Rev. D 90, 044040 (2014)

    ADS  Google Scholar 

  51. D. Malafarina, in Astrophysics of Black Holes. Astrophysics and Space Science Library ed. by C. Bambi vol. 440, p. 169 (2016)

    Google Scholar 

  52. D. Malafarina, Universe 3, 48 (2017)

    ADS  Google Scholar 

  53. D. Malafarina, B. Toshmatov, Phys. Rev. D 105, L121502 (2022)

    ADS  Google Scholar 

  54. P. Martín-Moruno, M. Visser, J. High Energ. Phys. 2013, 50 (2013)

    Google Scholar 

  55. M.M. May, R.H. White, Phys. Rev. 141, 1232 (1966)

    ADS  MathSciNet  Google Scholar 

  56. C. Misner, D. Sharp, Phys. Rev. 136, B571 (1964)

    ADS  Google Scholar 

  57. J.R. Oppenheimer, G.M. Volkov, Phys. Rev. 56, 374 (1939)

    ADS  Google Scholar 

  58. J.R. Oppenheimer, H. Snyder, Phys. Rev. 56, 455 (1939)

    ADS  MathSciNet  Google Scholar 

  59. R. Pellicer, R.J. Torrence, J. Math. Phys. 10, 1718 (1969)

    ADS  Google Scholar 

  60. R. Penrose, Phys. Rev. Lett. 14, 57 (1965)

    ADS  MathSciNet  Google Scholar 

  61. R. Penrose, Riv. Nuovo Cim. 1, 252 (1969)

    ADS  Google Scholar 

  62. A. Peres, Phys. Rev. 122, 273 (1961)

    ADS  MathSciNet  Google Scholar 

  63. E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics (Cambridge University Press, Cambridge, UK, 2004)

    Google Scholar 

  64. T.A. Roman, P.G. Bergmann, Phys. Rev. D 28, 1265 (1983)

    ADS  MathSciNet  Google Scholar 

  65. T. Schmitz, Phys. Rev. D 103, 064074 (2021)

    ADS  Google Scholar 

  66. J.M.M. Senovilla, Gen. Rel. Grav. 30, 701 (1998)

    ADS  Google Scholar 

  67. R.C. Tolman, Proc. Natl. Acad. Sci. USA 20, 410 (1934)

    Google Scholar 

  68. R. Tooper, Astrophys. J. 140, 434 (1964)

    ADS  MathSciNet  Google Scholar 

  69. B. Toshmatov, B. Ahmedov, A. Abdujabbarov, Z. Stuchlìk, Phys. Rev. D 89, 104017 (2014)

    ADS  Google Scholar 

  70. B. Toshmatov, Z. Stuchlìk, B. Ahmedov, Phys. Rev. D 98, 028501 (2018)

    ADS  MathSciNet  Google Scholar 

  71. B. Toshmatov, Z. Stuchlìk, B. Ahmedov, D. Malafarina, Phys. Rev. D 99, 064043 (2019)

    ADS  MathSciNet  Google Scholar 

  72. P.C. Vaidya, Proc. Indian Acad. Sc. A33, 264 (1951)

    ADS  Google Scholar 

  73. M. Visser, Phys. Rev. D 90, 127502 (2014)

    ADS  Google Scholar 

  74. A. Wang, Y. Wu, Gen. Relativ. Grav. 31, 107 (1999)

    ADS  Google Scholar 

  75. C.M. Will, Living Rev. Relativ. 17, 4 (2014)

    ADS  Google Scholar 

  76. P. Yodzis, H.-J. Seifert, H.M.Z. Hagen, Commun. Math. Phys. 34, 135 (1973)

    Google Scholar 

  77. Y.B. Zel’dovich, L.F. Grishchuk, Mon. Not. R. Astro. Soc. 2(07), 23 (1984)

    Google Scholar 

  78. P. Żenczykowski, Found. Sci. 24, 287 (2019)

    Google Scholar 

Download references

Acknowledgements

DM acknowledges support from Nazarbayev University Faculty Development Competitive Research Grant No. 11022021FD2926.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Malafarina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malafarina, D. (2023). Semi-classical Dust Collapse and Regular Black Holes. In: Bambi, C. (eds) Regular Black Holes. Springer Series in Astrophysics and Cosmology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1596-5_12

Download citation

Publish with us

Policies and ethics