Skip to main content

Regular Rotating Black Holes and Solitons with the de Sitter/Phantom Interiors

  • Chapter
  • First Online:
Regular Black Holes

Part of the book series: Springer Series in Astrophysics and Cosmology ((SSAC))

  • 409 Accesses

Abstract

We overview the basic characteristic features of the regular rotating black holes (RRBHs) and physical solitons G-lumps, which are nonsingular non-dissipative self-gravitating compact objects replacing naked singularities. Geometry of these objects is described by the axially symmetric metrics, obtained from spherical metrics of the Kerr-Schild class with using the Gürses-Gürsey formalism which includes the Newman-Janis algorithm. They have the interior de Sitter equatorial disk, and two types of interiors determined by the energy conditions. One of them contains an additional closed de Sitter vacuum S-surface with the de Sitter disk as a bridge, and a phantom fluid in the cavities between the S-surface and the disk. Geometry includes ergoregions where processes of extraction of the rotational energy can occur, as well as of the de Sitter and phantom energy. Around a RRBH there exists one counter-rotating unstable light ring, and one co-rotating light ring, stable for a certain class of black holes. Around spinning G-lumps there exists unstable counter-rotating light ring, and there can exist three co-rotating light rings, the innermost of them is stable, the stability of two additional light rings depends on the mass function. Existence of light rings allows to qualify RRBHs and G-lumps as the ultracompact objects. RRBHs can be identified by their shadows. Primordial RRBHs, their remnants and G-lumps present heavy dark matter (DM) candidates with the dark energy interiors. They can form graviatoms binding electrically charged particles. Their specific observational signature is the electromagnetic radiation whose frequency depends on the scale of the de Sitter interior. A nontrivial observational signature, predicted for all DM candidates with the de Sitter interiors of the GUT scale, is the induced proton decay in an underground detector like IceCUBE, due to non-conservation of the baryon and lepton numbers in their false vacuum interiors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.J. Adler et al., Gen. Rel. Grav. 33, 2101–2108 (2001). 10.1023/A

    Google Scholar 

  2. D.V. Ahluwalia, I. Dymnikova, v2 (2003), arXiv:hep-ph/0305158

  3. D.V. Ahluwalia, I. Dymnikova, Int. J. Mod. Phys. D 12, 1787–1794 (2003). https://doi.org/10.1142/S0218271803004328

  4. K. Akiyama et al., The Event Horizon Telescope Collaboration, Astrophys. J. Lett. 875, L1 (2019). https://doi.org/10.3847/2041-8213/ab0ec7

  5. S. Ansoldi et al., Phys. Lett. B 645, 261–266 (2007). https://doi.org/10.1016/j.physletb.2006.12.020

  6. R. Aros, Phys. Rev. D 77, 104013 (2008). https://doi.org/10.1103/PhysRevD.77.104013

  7. A. Ayon-Beato, A. Garcia, Phys. Lett. B 493, 5056–5059 (2000). https://doi.org/10.1016/S0370-2693

  8. M. Azreg-Aïnou, Phys. Rev. D 90, 064041 (2014). https://doi.org/10.1103/PhysRevD.90.064041

  9. L. Balart, E.C. Vagenas, Phys. Lett. B 730, 14–17 (2014). https://doi.org/10.1016/j.physletb.2014.01.024

  10. C. Bambi, L. Modesto, Phys. Lett. B 721, 329–334 (2013). https://doi.org/10.1016/j.physletb.2013.03.025

  11. C. Bambi et al., JCAP 05, 003 (2017). https://doi.org/10.1088/1475-7516/2017/05.003

  12. K. Banerjee, S. Ghosh, Phys. Lett. B 688, 224–229 (2010). https://doi.org/10.1016/j.physletb.2010.04.008

  13. L. Bellagamba et al., Europ. Phys. J. C. 72, 1957 (2012)

    Article  ADS  Google Scholar 

  14. L. Bergstrom, AIP Conference Proceedings 1241, 49 (2010). https://doi.org/10.1063/1.3462677

  15. W. Berej et al., Gen. Rel. Grav. 38, 885–906 (2006). https://doi.org/10.1007/s10714-006-0270-9

  16. A. Bonanno, M. Reuter, Phys. Rev. D 73 083005 (2006). https://doi.org/10.1103/PhysRevD.73.083005

  17. D. Boyanovski et al., Annu. Rev. Nucl. Part. Sci. 56, 441 (2006). https://doi.org/10.1146/annurev.nucl.56.080805.140539

  18. K.A. Bronnikov et al., Class. Quantum Gravity. 29, 095025-095047 (2012). https://doi.org/10.1088/0264-9381/29/9/095025

  19. K.A. Bronnikov, S.G. Rubin, Black Holes (Singapore, Cosmology and Extra Dimensions; World Scientific, 2013)

    MATH  Google Scholar 

  20. A. Ya. Burinskii, Sov. Phys. JETP. 39, 193–217 (1974)

    Google Scholar 

  21. A. Burinskii, Gravit. Cosmol. 8, 261–271 (2002)

    ADS  MathSciNet  Google Scholar 

  22. A. Burinskii et al., Phys. Rev. D 65, 064039 (2002). https://doi.org/10.1103/PhysRevD.65.064039

  23. A. Burinskii, Gravit. Cosmol. 12, 119–125 (2006). https://doi.org/10.48550/arXiv.gr-qc/0610007

  24. A. Burinskii, J. Phys. Conf. Ser. 532, 012004 (2014). https://doi.org/10.1088/1742-6596/532/1/012004

  25. R.R.Caldwell et al., Phys. Rev. Lett. 80, 1582–1585 (1998). https://doi.org/10.1103/PhysRevLett.80.1582

  26. R.R. Caldwell, Phys. Lett. B 545, 23–29 (2002). https://doi.org/10.1016/S0370-2693(02)02589-3

  27. S. Capozziello et al., Eur. Phys.J. C 69, 293–303 (2010). https://doi.org/10.1140/epjc/s10052-010-1387-2

  28. F. Caravelli, L. Modesto, Class. Quantum Gravity. 27, 245022 (2010). https://doi.org/10.1088/0264-9381/27/24/245022

  29. V. Cardoso et al., Phys. Rev. D 90, 044069 (2014). https://doi.org/10.1103/PhysRevD.90.044069

  30. B.J. Carr et al., Phys. Rev. D 50, 4853–4867 (1994). https://doi.org/10.1103/PhysRevD.50.4853

  31. B.J. Carr, Proc. of 22nd Texas Symp., ECONFCO 41213 v1 (2004) 0204. v1 (2004), arXiv.org/abs/astro-ph/0504034. https://doi.org/10.48550/arXiv.astro-ph/0504034

  32. A. Casanova, E. Spallucci, Class. Quantum Gravity. 23, R45 (2006). https://doi.org/10.1088/0264-9381/23/3/R01

  33. C.-K. Chan et al., Astrophys. J. 799, 1 (2015). https://doi.org/10.1088/0004-637X/799/1/1

  34. S. Chandrasekhar, The Mathematical Theory of Black Holes (Clarendon Press, Oxford, UK, 1983)

    MATH  Google Scholar 

  35. T. Chiba, M. Kimura, Progres Theor. Exp. Phys. 2017, 043E01 (2017). https://doi.org/10.1093/ptep/ptx037

  36. J.M. Cohen, J. Math. Phys. 8, 1477–1478 (1967). https://doi.org/10.1063/1.1705382

  37. S. Coleman, New Phenomena in Subnuclear Physics, ed. by A. Zichichi, vol. Part A (New York, Plenum, 1977), pp. 297–421

    Google Scholar 

  38. E.J. Copeland et al., Phys. Rev. D 49, 6410–6433 (1994). https://doi.org/10.1103/PhysRevD.49.6410

  39. V. de la Cruz et al., Phys. Rev. Lett. 24, 423–426 (1970). https://doi.org/10.1103/PhysRevLett.24.423

  40. P.V.P. Cunha et al., Phys. Rev. Lett. 119, 251102 (2017). https://doi.org/10.1103/PhysRevLett.119.251102

  41. P.V.P. Cunha, C.A.R. Herdeiro, Gen. Relativ. Gravit. 50, 42 (2018). https://doi.org/10.1007/s10714-018-2361-9

  42. P.V.P. Cunha, C.A.R. Herdeiro, Phys. Rev. Lett. 124, 181101 (2020). https://doi.org/10.1103/PhysRevLett.124.181101

  43. S. Dimopoulos, G.Landsberg, Phys. Rev. Lett. 87, 161602 (2001). https://doi.org/10.1103/PhysRevLett.87.161602

  44. S.S. Doeleman et al., Nat. 455, 78–80 (2008). https://doi.org/10.1038/nature07245

  45. S.R. Dolan, J.O. Shipley, Phys. Rev. D 94, 044038 (2016). https://doi.org/10.1103/PhysRevD.94.044038

  46. I. Dymnikova, Sov. Phys. Uspekhi. 29, 215–237 (1988). https://doi.org/10.1070/PU1986v029n03ABEH003178

  47. I. Dymnikova, Gen. Relativ. Gravit. 24, 235–242 (1992). doi:0001-7701/9/0300-0235506.50/0

    Google Scholar 

  48. I. Dymnikova, Int. J. Mod. Phys. D. 5(5), 529–540 (1996)

    Article  ADS  Google Scholar 

  49. I. Dymnikova, Internal Structure of Black Holes and Spacetime Singularities. ed. by M. Burko, A. Ori, Bristol In-t of Physics Publishing, Bristol, TN, USA; Philadelphia, PA, USA; Annals of the Israel Physical Society 13, 422–440 (1997)

    Google Scholar 

  50. I. Dymnikova, Phys. Lett. B 472, 33–38 (2000). https://doi.org/10.1016/S0370-2693(99)01374-X

  51. I. Dymnikova, Class. Quantum Gravity. 19, 725–739 (2002). https://stacks.iop.org/CQG/19/725

  52. I. Dymnikova, Int. J. Mod. Phys. D 12, 1015–1034 (2003). https://doi.org/10.1142/S021827180300358X

  53. I. Dymnikova, Class. Quantum Gravity. 21, 4417–4428 (2004). https://doi.org/10.1088/1361-6382/21/18/009

  54. I. Dymnikova, Phys. Lett. B 639, 368–372 (2006). https://doi.org/10.1016/j.physletb.2006.06.035

  55. I. Dymnikova, E. Galaktionov, Phys. Lett. B 645, 358–364 (2007). https://doi.org/10.1016/j.physletb.2006.12.047

  56. I. Dymnikova, J. Phys. Math. & Theor. 41, 304033 (2008). https://doi.org/10.1088/1751-8113/41/30/304033

  57. I. Dymnikova, AIP Conference Proceedings 1241, 361 (2010). https://doi.org/10.1063/1.3462656

  58. I. Dymnikova, M. Korpusik, Phys. Lett. B 685, 12 (2010). https://doi.org/10.1016/j.physletb.2010.01.044

  59. I. Dymnikova, E. Galaktionov, Central Europ. J. Phys. 9, 644–653 (2011). https://doi.org/10.2478/s11534-010-0071-3

  60. I. Dymnikova, M. Fil’chenkov, AHEP 2013, 746894 (2013). https://doi.org/10.1155/2013/746894

  61. I. Dymnikova, E. Galaktionov, Class. Quantum Gravity 32, 165015 (2015). https://doi.org/10.1088/0264-9381/32/16/165015

  62. I. Dymnikova, M. Khlopov, Int. J. Mod. Phys. D 24, 1545002 (2015). https://doi.org/10.1142/S0218271815450029

  63. I. Dymnikova, E. Galaktionov, Class. Quantum Gravity. 33, 145010 (2016). https://doi.org/10.1088/0264-9381/33/14/145010

  64. I. Dymnikova, E. Galaktionov, Adv. Math. Phys. 2017, 1035381 (2017). https://doi.org/10.1155/2017/1035381

  65. I. Dymnikova, K. Kraav, Universe. 5, 163 (2019). https://doi.org/10.3390/universe5070163

  66. I. Dymnikova, Symmetry. 12, 12 (2020). https://doi.org/10.3390/sym12040662

  67. I. Dymnikova, Symmetry. 12, 634 (2020). https://doi.org/10.3390/sym12040634

  68. I. Dymnikova, Universe. 6, 179 (2020). https://doi.org/10.3390/universe6100179

  69. I. Dymnikova et al., Universe. 8, 65 (2022). https://doi.org/10.3390/universe8020065

  70. I. Dymnikova, Universe. 8, 305 (2022). https://doi.org/10.3390/universe8060305

  71. A. Eichhorn, A. Held, Eur. Phys. J. C 81, 933 (2021). https://doi.org/10.1140/epjc/s10052-021-09716-2

  72. G.F.R. Ellis, (2013), arXiv:1310.4771

  73. F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964). https://doi.org/10.1103/PhysRevLett.13.321

  74. H. Falcke et al., Astrophys. J. Lett. 528, L13 (2000). https://doi.org/10.1086/312423

  75. V.P. Frolov et al., Phys. Rev. D 41, 383–394 (1990). https://doi.org/10.1103/PhysRevD.41.383

  76. A. Garcia et al., Phys. Rev. Lett. 74, 1276 (1995). https://doi.org/10.1103/PhysRevLett.74.1276

  77. S.G. Ghosh, Eur. Phys. J. C 75, 532 (2015). https://doi.org/10.1140/epjc/s10052-015-3740-y

  78. R. Ghosh, S. Sarkar, Phys. Rev. D 104, 044019 (2021). https://doi.org/10.1103/PhysRevD.104.044019

  79. A. Grenzebach et al., Phys. Rev. D 89, 124004 (2014). https://doi.org/10.1103/PhysRevD.89.124004

  80. A.A. Grib, Yu.V. Pavlov, Mod. Phys. Lett. A 23, 1151–1159 (2008). https://doi.org/10.1142/S0217732308027072

  81. M. Guo, S. Gao, Phys. Rev. D 103, 104031 (2021). https://doi.org/10.1103/PhysRevD.103.104031

  82. G.Ś. Guralnik et al., Phys. Rev. Lett. 13, 585–587 (1964). https://doi.org/10.1103/PhysRevLett.13.585

  83. M. Gürses, F. Gürsey, J. Math. Phys. 16, 2385 (1975). https://doi.org/10.1063/1.522480

  84. V.H. Hamity, Phys. Lett. A. 56, 77–78 (1976)

    Article  ADS  Google Scholar 

  85. C.M. Harris et al., JHEP 0505, 053 (2005). https://doi.org/10.1088/1126-6708/2005/05/053

  86. S.W. Hawking, Mon. Not. R. Astron. Soc. 152, 75 (1971). https://doi.org/10.1093/mnras/152.1.75

  87. S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time, (Cambridge University Press, 1973)

    Google Scholar 

  88. S.A. Hayward, Phys. Rev. Lett. 96, 031103 (2006). https://doi.org/10.1103/PhysRevLett.96.031103

  89. P.W. Higgs, Phys. Rev. Lett. 13, 508–509 (1964). https://doi.org/10.1103/PhysRevLett.13.508

  90. K. Hioki, K. Maeda, Phys. Rev. D 80, 024042 (2009). https://doi.org/10.1103/PhysRevD.80.024042

  91. S. Hod, Phys. Lett. B 776, 1–4 (2018). https://doi.org/10.1016/j.physletb.2017.11.021

  92. S. Hod, Europ. Phys. J. C 78, 417 (2018). https://doi.org/10.1140/epjc/s10052-018-5905-y

  93. S. Iso et al., Phys. Rev. D 7, 044017 (2006). https://doi.org/10.1103/PhysRevD.74.044017

  94. W. Israel, Phys. Rev. D 2, 641–646 (1970). https://doi.org/10.1103/PhysRevD.2.641

  95. T. Johannsen, Astrophys. J. 777, 170 (2013). https://doi.org/10.1088/0004-637X/777/2/170

  96. O.E. Kalashev et al., Phys. Rev. D 80, 103006 (2009). https://doi.org/10.1103/PhysRevD.80.103006

  97. H. Kawai et al., Int. J. Mod. Phys. A 28, 1350050 (2013). https://doi.org/10.1142/S0217751X13500504

  98. R.P. Kerr, Phys. Rev. Lett. 11, 237–238 (1963). https://doi.org/10.1103/PhysRevLett.11.237

  99. R.P. Kerr, A. Schild, Proceedings of Symposia in Applied Mathematics (Amer. Math. Soc., Providence, R. I.) 17, 199 (1965)

    Google Scholar 

  100. M.Y. Khlopov, Res. Astron. Astrophys. 10, 495 (2010). https://doi.org/10.1088/1674-4527/10/6/001

  101. B. Koch et al., JHEP 0510, 053 (2005). https://doi.org/10.1088/1126-6708/2005/10/053

  102. G. Landsberg, J. Phys. G 32, R337 (2006). https://doi.org/10.1088/0954-3899/32/9/R02

  103. Z. Li, C. Bambi, J. Cosmol. & Astropart. Phys. 2014, 041 (2014). https://doi.org/10.1088/1475-7516/2014/01/041

  104. Y. Ling, M.-H. Wu, (2022), arXiv:2205.08919 [gr-qc] . https://doi.org/10.48550/arXiv.2205.08919

  105. F.S.N. Lobo et al., JCAP 07, 011 (2013). https://doi.org/10.1088/1475-7516/2013/07/011

  106. T. De Lorenzo et al., Gen. Rel. Grav. 48, 31–36 (2016). https://doi.org/10.1007/s10714-016-2026-5

  107. D.H. Lyth, A. Riotto, Phys. Rep. 314, 1 (1999). https://doi.org/10.1016/S0370-1573(98)00128-8

  108. J.H. MacGibbon, Nat. 329, 308–309 (1987). https://doi.org/10.1038/329308a0

  109. A.D. Masa, V.T. Zanchin, (2022), arXiv:2204.08113 [gr-qc]. https://doi.org/10.48550/arXiv.2204.08113

  110. K. Mars et al., Class. Quantum Gravity. 35, 025005 (2018). https://doi.org/10.1088/1361-6382/aa97ff

  111. M. Maziashvili, Phys. Lett. B 635, 232 (2006). https://doi.org/10.1016/j.physletb.2006.03.009

  112. Y. Mizuno et al., Nat. Astron. Lett. 2, 585 (2018). https://doi.org/10.1038/s41550-018-0449-5

  113. L. Modesto, P. Nicolini, Phys. Rev. D 82, 104035 (2010). https://doi.org/10.1103/PhysRevD.82.104035

  114. L. Modesto et al., Phys. Lett. B 695, 397–400 (2011). https://doi.org/10.1016/j.physletb.2010.11.046

  115. G.C. Nayak, Phys. Part. Nucl. Lett. 8, 337 (2011). https://doi.org/10.1134/S1547477111040121

  116. J.C.S. Neves, A. Saa, Phys. Lett. B 734, 44–48 (2014). https://doi.org/10.1016/j.physletb.2014.05.026

  117. E.T. Newman, A.J. Janis, J. Math. Phys. 6, 915–917 (1965). https://doi.org/10.1063/1.1704350

  118. P. Nicolini et al., Phys. Lett. B 632, 547–551 (2006). https://doi.org/10.1016/j.physletb.2005.11.004

  119. K. Nozari, S.H. Mehdipour, Mod. Phys. Lett. A 20, 2937 (2005). https://doi.org/10.1142/S0217732305018050

  120. S. Pameli, D. Ujjal, Europ. Phys. J. C 79, 919 (2019). https://doi.org/10.1140/epjc/s10052-019-7427-7

  121. E. Poisson, W. Israel, Class. Quantum Gravity. 5, L201 (1988). https://doi.org/10.1088/0264-9381/5/12/002

  122. A.G. Polnarev, M.Yu. Khlopov, Sov. Phys. Uspekhi. 28, 213–232 (1985). https://doi.org/10.3367/UFNr.0145.198503a.0369

  123. C. Quigg, Gauge Theories of the Strong, Weak and Electromagnetic Interactions, (Addison-Wesley Publishing Company, Redwood City, CA, US, 1983)

    Google Scholar 

  124. S. Ray et al., Intern. J. Mod. Phys. D 29, 2030004 (2020). https://doi.org/10.1142/S0218271820300049

  125. S.V. Repin et al., (2018), arXiv:1802.04667. https://doi.org/10.48550/arXiv.1802.04667

  126. L. Rezzolla, A. Zhidenko, Phys. Rev. D 90, 084009 (2014). https://doi.org/10.1103/PhysRevD.90.084009

  127. R.G.H. Robertson et al., Phys. Rev. Lett. 67, 957 (1991). https://doi.org/10.1103/PhysRevLett.67.957

  128. F. Scardigli et al., Phys. Rev. D 83(2011), 063507 (2011). https://doi.org/10.1103/PhysRevD.83.063507

  129. J.D. Schnittman, Gen. Rel. Grav. 50, 77 (2018). https://doi.org/10.1007/s10714-018-2373-5

  130. H. Stoecker, Int. J. Mod. Phys. D 16, 185 (2007). https://doi.org/10.1142/S0218271807009930

  131. L. Susskind, J. Math. Phys. 36, 6377 (1995). https://doi.org/10.1063/1.531249

  132. R. Takahashi, Astrophys. J. 611, 996 (2004). https://doi.org/10.1086/422403

  133. S. Takeuchi, Class. Quantum Gravity. 33, 225016 (2016). https://doi.org/10.1088/0264-9381/33/22/225016

  134. Zi.-Yu. Tang, Class. Quantum Gravity. 34 245006 (2017). https://doi.org/10.1088/1361-6382/aa95ff

  135. R. Torres, F. Fayos, (2016), arXiv:1611.03654 [gr-qc]. https://doi.org/10.48550/arXiv.1611.03654

  136. B. Toshmatov et al., Phys. Rev. D 89, 104017 (2014). https://doi.org/10.1103/PhysRevD.89.104017

  137. Z. Younsi et al., Astron. Astrophys. 545, A13 (2012). https://doi.org/10.1051/0004-6361/201219599

  138. Ya. B. Zel’dovich, JETP Lett. 6, 316–317 (1967)

    Google Scholar 

  139. Ya.B. Zeldovich, I.D. Novikov, Sov. Astron. 10, 602 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Dymnikova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dymnikova, I. (2023). Regular Rotating Black Holes and Solitons with the de Sitter/Phantom Interiors. In: Bambi, C. (eds) Regular Black Holes. Springer Series in Astrophysics and Cosmology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1596-5_1

Download citation

Publish with us

Policies and ethics