Skip to main content

Animal Model of Aluminum-Induced Alzheimer’s Disease

  • Chapter
  • First Online:
Neurotoxicity of Aluminum
  • 200 Accesses

Abstract

The lack of a satisfactory animal model for Alzheimer’s disease (AD) has limited progress in understanding the pathogenesis of the disease and therapeutic agents aimed at important pathophysiological points. In this chapter, we analyzed the research status of an animal model of aluminum-induced Alzheimer’s disease. Compared with other animal models, Al-maltolate-treated aged rabbits are a more reliable and efficient system in sharing a common mechanism with the development of neurodegeneration in Alzheimer’s disease. In addition, the animal models induced by novel nanoaluminum particles are reviewed at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xie J, Wang H, Lin T (2017) Microglia-synapse pathways: promising therapeutic strategy for Alzheimer’s disease. Biomed Res Int 2017:2986460

    Article  PubMed  PubMed Central  Google Scholar 

  2. Obulesu M, Rao DM (2010) Animal models of Alzheimer’s disease: an understanding of pathology and therapeutic avenues. Int J Neurosci 120(8):531–537

    Article  CAS  PubMed  Google Scholar 

  3. McLaughlin AI, Kazantzis G, King E, Teared, Porter RJ, Owen R (1962) Pulmonary fibrosis and encephalopathy associated with the inhalation of aluminum dust. Br J Ind Med 19:253–263

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Klatzo I, Wisniewski H, Streicher E (1965) Experimental production of neurofibrillary degeneration. I. light microscopic observations. J Neuropathol Exp Neurol 24:187–199

    Article  CAS  PubMed  Google Scholar 

  5. Crapper DR, Krishnan SS, Dalton AJ (1973) Brain aluminum distribution in Alzheimer’s disease and experimental neurofibrillary degeneration. Science 180(4085):511–513

    Article  CAS  PubMed  Google Scholar 

  6. Priest ND (2004) The biological behavior and bioavailability of aluminum in man, with special reference to studies employing aluminum-26 as a tracer: review and study update. J Environ Monit 6(5):375–403

    Article  CAS  PubMed  Google Scholar 

  7. Yumoto S, Nagai H, Matsuzaki H, Matsumura H, Tada W, Nagatsuma E et al (2001) Aluminum incorporation into the brain of rat fetuses and sucklings. Brain Res Bull 55(2):229–234

    Article  CAS  PubMed  Google Scholar 

  8. Wills MR, Savory J (1983) Aluminum poisoning: dialysis encephalopathy, osteomalacia, and anemia. Lancet 2(8340):29–34

    Article  CAS  PubMed  Google Scholar 

  9. Uemura E (1984) Intranuclear aluminum accumulation in chronic animals with experimental neurofibrillary changes. Exp Neurol 85(1):10–18

    Article  CAS  PubMed  Google Scholar 

  10. Wisniewski HM, Sturman JA, Shek JW, Iqbal K (1985) Aluminum and the central nervous system. J Environ Pathol, Toxicol Oncol 6(1):1–8

    CAS  PubMed  Google Scholar 

  11. Savory J, Herman MM, Ghribi O (2003) Intracellular mechanisms underlying aluminum-induced apoptosis in rabbit brain. J Inorg Biochem 97(1):151–154

    Article  CAS  PubMed  Google Scholar 

  12. Jagannatha R, Anitha S, Latha S (2000) Aluminum-induced neurodegeneration in the hippocampus of aged rabbits mimics Alzheimer’s disease. Alzheimers Rep 3(2):83–88

    Google Scholar 

  13. Finnegan MM, Rettig SJ, Orvig C (1986) ChemInform abstract: a neutral water-soluble aluminum complex of neurological interest. J Am Chem Soc 108:5033–5035

    Article  CAS  Google Scholar 

  14. Vasudevaraju P, Govindaraju M, Palanisamy AP, Sambamurti K, Rao KS (2008) Molecular toxicity of aluminum in relation to neurodegeneration. Indian J Med Res 128(4):545–556

    CAS  PubMed  Google Scholar 

  15. Garruto RM, Yanagihara R, Shankar SK, Wolff A, Salazar AM, Amyx HL (2009) Experimental models of metal-induced neurofibrillary degeneration. Amyotroph Lateral Scler:41–50

    Google Scholar 

  16. Kaneko N, Yasui H, Takada J, Suzuki K, Sakurai H (2004) Orally administered aluminum-maltolate complex enhances oxidative stress in the organs of mice. J Inorg Biochem 98(12):2022–2031

    Article  CAS  PubMed  Google Scholar 

  17. Maccioni RB, Cambiazo V (1995) Role of microtubule-associated proteins in the control of microtubule assembly. Physiol Rev 75(4):835–864

    Article  CAS  PubMed  Google Scholar 

  18. Geula C, Wu CK, Saroff D, Lorenzo A, Yuan M, Yankner BA (1998) Aging renders the brain vulnerable to 26 β-protein neurotoxicity. Nat Med 4(7):827–831

    Article  CAS  PubMed  Google Scholar 

  19. Rao KSJ, Anitha S, Latha KS (2000) Aluminum-induced neurodegeneration in the hippocampus of aged rabbits mimics Alzheimer’s disease. Alzheimers Rep 3(2):83–88

    Google Scholar 

  20. Nicholls DM, Speares GM, Miller ACM, Math J, Bianco GD (1991) Brain protein synthesis in rabbits following low level aluminum exposure. Int J Biochem 23(7-8):737–741

    Article  CAS  PubMed  Google Scholar 

  21. Song J, Liu Y, Zhang HF, Zhang QL, Niu Q (2014) Effects of exposure to aluminum on long-term potentiation and AMPA receptor subunits in rats in vivo. Biomed Environ Sci 27(2):77–84

    CAS  PubMed  Google Scholar 

  22. Song J, Liu Y, Zhang HF, Niu Q (2016) The RAS/PI3K pathway is involved in the impairment of long-term potentiation induced by acute aluminum treatment in rats. Biomed Environ Sci 29(11):782–789

    CAS  PubMed  Google Scholar 

  23. Savory J, Rao JKS, Huang Y, Letada PR, Herman MM (1999) Age-related hippocampal changes in Bcl-2: Bax ratio, oxidative stress, redox-active iron and apoptosis associated with aluminum-induced neurodegeneration: increased susceptibility with aging. Neuro Toxicol 20(5):805–818

    CAS  Google Scholar 

  24. Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23(1):134–147

    Article  CAS  PubMed  Google Scholar 

  25. Lovell MA, Ehmann WD, Markesbery WR (1993) Laser microprobe analysis of brain aluminum in Alzheimer’ disease. Ann Neurol 33(1):36–42

    Article  CAS  PubMed  Google Scholar 

  26. Katsetos CD, Savory J, Herman MM, Carpenter RM, Frankfurter A, Hewitt CD et al (1990) Neuronal cytoskeletal lesions induced in the CNS by intraventricular and intravenous aluminum maltol in rabbits. Neuropathol Appl Neurobiol 16(6):511–528

    Article  CAS  PubMed  Google Scholar 

  27. Savory J, Huang Y, Herman MM, Reyes MR, Wills MR (1995) Tau immunoreactivity associated with aluminum maltolate-induced neurofibrillary degeneration in rabbits. Brain Res 669(2):325–329

    Article  CAS  PubMed  Google Scholar 

  28. Savory J, Huang Y, Herman MM, Wills MR (1996) Quantitative image analysis of temporal changes in tau and neurofilament proteins during the course of acute experimental neurofibrillary degeneration; nonphosphorylated epitopes precede phosphorylation. Brain Res 707(2):272–281

    Article  CAS  PubMed  Google Scholar 

  29. Savory J, Ghribi O, Forbes MS, Herman MM (2001) Aluminum and neuronal cell injury: interrelationships between neurofilamentous arrays and apoptosis. J Inorg Biochem 87(1):15–19

    Article  CAS  PubMed  Google Scholar 

  30. Savory J, Herman MM, Erasmus RT, Boyd JC, Wills MR (1994) Partial reversal of aluminum-induced neurofibrillary degeneration by desferrioxamine in adult male rabbits. Neuropathol Appl Neurobiol 20(1):31–37

    Article  CAS  PubMed  Google Scholar 

  31. Garruto RM, Fukatsu R, Yanagihara R, Gajdusek DC, Hook G, Fiori CE (1984) Imaging of calcium and aluminum in neurofibrillary tangle-bearing neurons in parkinsonism-dementia of Guam. Proc Natl Acad Sci U S A 81(6 I):1875–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Savory J, Herman MM, Ghribi O (2006) Mechanisms of aluminum-induced neurodegeneration in animals: implications for Alzheimer’s disease. J Alzheimers Dis 10(2-3):135–144

    Article  PubMed  Google Scholar 

  33. Rao JKS, Katsetos CD, Herman MM, Savory J (1998) Experimental aluminum encephalomyelopathy: relationship to human neurodegenerative disease. Clin Lab Med 18(4):687–698

    Article  CAS  PubMed  Google Scholar 

  34. Kowall NW, Pendlebury WW, Kessler JB, Perl DP, beal MF. (1989) Aluminum-induced neurofibrillary degeneration affects a subset of neurons in rabbit cerebral cortex, basal forebrain and upper brainstem. Neuroscience 29(2):329–337

    Article  CAS  PubMed  Google Scholar 

  35. Wisniewski H, Harrington C, Wischik C, McArthur F, Taylor G, Edwardson J et al (1994) Aluminum, tau protein, and Alzheimer’s disease. Lancet 344(8916):204–205

    Article  CAS  PubMed  Google Scholar 

  36. Hof PR, Bouras C, Buée L, Delacourte A, Perl DP, Morrison JH (1992) Differential distribution of neurofibrillary tangles in the cerebral cortex of dementia pugilistica and Alzheimer’s disease cases. Acta Neuropathol 85(1):23–30

    Article  CAS  PubMed  Google Scholar 

  37. Wisniewski H, Sturman JA, Shek JW (1982) Chronic model of neurofibrillary changes in dendrites. Acta Neuropathol (Berlin) 63:190–197

    Article  Google Scholar 

  38. Wisniewski HM, Sturman JA, Shek JW (1982) Chronic model of neurofibrillary changes induced in mature rabbits by metallic aluminum. Neurobiol Aging 3(1):11–22

    Article  CAS  PubMed  Google Scholar 

  39. Bharathi, Shamasundar NM, Sathyanarayana Rao TS, Dhanunjaya Naidu M, Ravid R, Rao KS (2006) A new insight on Al-maltolate-treated aged rabbit as Alzheimer’s animal model. Brain Res Rev 52(2):275–292

    Article  CAS  PubMed  Google Scholar 

  40. Smith MA, Siedlak SL, Richey PL, Nagaraj RH, Elhammer A, Perry G (1996) Quantitative solubilization and analysis of insoluble paired helical filaments from Alzheimer disease. Brain Res 717(1-2):99–108

    Article  CAS  PubMed  Google Scholar 

  41. Smith MA, Perry G, Richey PL, Sayre LM, Anderson VE, Beal MF et al (1996) Oxidative damage in Alzheimer’s. Nature 382(6587):120–121

    Article  CAS  PubMed  Google Scholar 

  42. Smith MA, Nunomura A, Lee HG, Zhu X, Moreira PI, Avila J et al (2005) Chronological primacy of oxidative stress in Alzheimer disease. Neurobiol Aging 26(5):579–580

    Article  CAS  PubMed  Google Scholar 

  43. Yokel RA, O’Callaghan JP (1998) An aluminum-induced increase in GFAP is attenuated by some chelators. Neurotoxicol Teratol 20(1):55–60

    Article  CAS  PubMed  Google Scholar 

  44. Good PF, Perl DP, Bierer LM, Schmeidler J (1992) Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer’s disease: a laser microprobe (LAMMA) study. Ann Neurol 31(3):286–292

    Article  CAS  PubMed  Google Scholar 

  45. Good PF, Werner P, Hsu A, Olanow CW, Perl DP (1996) Evidence for neuronal oxidative damage in Alzheimer’s disease. Am J Pathol 140:621–628

    Google Scholar 

  46. Kitamura Y, Shimohama S, Kamoshima W, Ota T, Matsuoka Y, Nomura Y et al (1998) Alteration of proteins regulating apoptosis, Bcl-2, Bcl-x, Bax, Bak, Bad, ICH-1 and CPP32, in Alzheimer’s disease. Brain Res 780(2):260–269

    Article  CAS  PubMed  Google Scholar 

  47. Smith MA, Kutty RK, Richey PL, Yan SD, Stern D, Chader GJ et al (1994) Heme oxygenase-1 is associated with the neurofibrillary pathology of Alzheimer’s disease. Am J Pathol 145(1):42–47

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Szutowicz A, Bielarczyk H, Kisielevski Y, Jankowska A, Madziar B, Tomaszewicz M (1998) Effects of aluminum and calcium on acetyl-CoA metabolism in rat brain mitochondria. J Neurochem 71(6):2447–2453

    Article  CAS  PubMed  Google Scholar 

  49. Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281(5381):1322–1326

    Article  CAS  PubMed  Google Scholar 

  50. Griffioen KJS, Ghribi O, Fox N, Savory J, Dewitt DA (2004) Aluminum maltolate-induced toxicity in NT2 cells occurs through apoptosis and includes cytochrome c release. Neuro Toxicol 25(5):859–867

    CAS  Google Scholar 

  51. Ghribi O, Dewitt DA, Forbes MS, Herman MM, Savory J (2001) Involvement of mitochondria and endoplasmic reticulum in regulation of apoptosis: changes in cytochrome-c, Bcl-2 and Bax in the hippocampus of aluminum treated rabbits. Brain Res 8:764–773

    CAS  Google Scholar 

  52. Ghribi O, Herman MM, DeWitt DA, Forbes MS, Savory J (2001) Aβ(1-42) and aluminum induce stress in the endoplasmic reticulum in rabbit hippocampus, involving nuclear translocation of gadd 153 and NF-κB. Mol Brain Res 96(1-2):30–38

    Article  CAS  PubMed  Google Scholar 

  53. Ghribi O, DeWitt DA, Forbes MS, Herman MM, Savory J (2001) Coinvolvement of mitochondria and endoplasmic reticulum in regulation of apoptosis: changes in cytochrome c, Bcl-2 and Bax in the hippocampus of aluminum-treated rabbits. Brain Res 903(1-2):66–73

    Article  CAS  PubMed  Google Scholar 

  54. Mecocci P, Beal MF, Cecchetti R, Polidori MC, Cherubini A, Chionne F et al (1997) Mitochondrial membrane fluidity and oxidative damage to mitochondrial DNA in aged and AD human brain. Mol Chem Neuropathol 31(1):53–64

    Article  CAS  PubMed  Google Scholar 

  55. Mecocci P, MacGarvey U, Beal MF (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 36(5):747–751

    Article  CAS  PubMed  Google Scholar 

  56. Shah SA, Yoon GH, Ahmad A, Ullah F, Amin FU, Kim MO (2015) Nanoscale-alumina induces oxidative stress and accelerates amyloid beta (a beta) production in ICR female mice. Nanoscale 7(37):15225–15237

    Article  CAS  PubMed  Google Scholar 

  57. Mehrbeheshti N, Esmaili Z, Ahmadi M, Moosavi M (2022) A dose response effect of oral aluminum nanoparticle on novel object recognition memory, hippocampal caspase-3 and MAPKs signaling in mice. Behav Brain Res 417:113615

    Article  CAS  PubMed  Google Scholar 

  58. M’Rad I, Jeljeli M, Rihane N, Hilber P, Sakly M, Amara S (2018) Aluminium oxide nanoparticles compromise spatial learning and memory performance in rats. EXCLI J 17:200–210

    PubMed  PubMed Central  Google Scholar 

  59. Huang T, Guo WW, Wang YH, Chang LJ, Shang N, Chen J et al (2021) Involvement of mitophagy in aluminum oxide nanoparticle-induced impairment of learning and memory in mice. Neurotox Res 39(2):378–391

    Article  CAS  PubMed  Google Scholar 

  60. Chen J, Fan R, Wang YH, Huang T, Shang N, He KH et al (2020) Progressive impairment of learning and memory in adult zebrafish treated by Al2O3 nanoparticles when in embryos. Chemosphere 254:126608

    Article  CAS  PubMed  Google Scholar 

  61. Fan R, Chen J, Gao XC, Zhang QL (2021) Neurodevelopmental toxicity of alumina nanoparticles to zebrafish larvae: toxic effects of particle sizes and ions. Food Chem Toxicol 157:112587

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Song, J. (2023). Animal Model of Aluminum-Induced Alzheimer’s Disease. In: Niu, Q. (eds) Neurotoxicity of Aluminum. Springer, Singapore. https://doi.org/10.1007/978-981-99-1592-7_7

Download citation

Publish with us

Policies and ethics