Skip to main content

It Began with the Pharmacological Evaluation of Endocrine Disruptors

  • Chapter
  • First Online:
Health Risk Assessment of Environmental Chemicals
  • 80 Accesses

Abstract

In this chapter, we show how we can demonstrate rat hyperactivity by endocrine disruptors with a combination of pharmacological approaches and the evaluation of environmental studies. Then, our animal studies are supported by epidemiology. Bisphenol A, p-nitrotoluene, and atrazine are overviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bardullas U, Giordano M, Rodríguez VM (2011) Chronic atrazine chronic atrazine exposure causes disruption of the spontaneous locomotor activity and alters the striatal dopaminergic system of the male Sprague-Dawley rat. Neurotoxicol Teratol 33:263–272

    Article  CAS  PubMed  Google Scholar 

  • Chini M, Hanganu-Opatz IL (2021) Prefrontal cortex development in health and disease: lessons from rodents and humans. Trends Neurosci 44:227–240. https://doi.org/10.1016/j.tins.2020.10.017

    Article  CAS  PubMed  Google Scholar 

  • Cho S-C, Bhang SY, Hong YC, Shin MS, Kim BN, Kim JW, Yoo HJ, Cho IH, Kim HW (2010) Relationship between environmental phthalate exposure and the intelligence of school-age children. Environ Health Perspect 118:1027–1032. https://doi.org/10.1289/ehp.0901376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chopra V, Harley K, Lahiff M, Eskenazia B (2014) Association between phthalates and attention deficit disorder and learning disability in U.S. children, 6–15 years. Environ Res 128:64–69. https://doi.org/10.1016/j.envres.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  • Elsworth JD, Jentsch JD, VandeVoort CA, Robert H, Roth RH, Redmond Jr ED, Leranthe C (2013) Prenatal exposure to bisphenol a impacts midbrain dopamine neurons and hippocampal spine synapses in non-human primates. Neurotoxicology 35:113–120. https://doi.org/10.1016/j.neuro.2013.01.001

  • Harley KG, Schall RA, Chevrier J, Tyler K, Aguirre H, Bradman A, Holland NT, Lustig RH, Calafat AM, Eskenazi B (2013) Prenatal and postnatal bisphenol a and body mass index in childhood in the CHAMACOS cohort. Environ Health Perspect 121(4):514–520. https://doi.org/10.1289/ehp.1205548

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang H-B, Chen H-Y, Su P-H, Huang P-C, Sun C-W, Wang C-J, Hsiao-Yen Chen H-Y, Hsiung CA, Shu-Li Wang S-L (2015) Fetal and childhood exposure to phthalate diesters and cognitive function in children up to 12 years of age: Taiwanese maternal and infant cohort study. PLoS One. https://doi.org/10.1371/journal.pone.0131910

  • Ishido M (2023) Chemical nature of attention deficit hyperactivity disorder (ADHD)-related chemical subfamily. Chemosphere 313:137495. https://doi.org/10.1016/j.chemosphere.2022.137495

    Article  CAS  PubMed  Google Scholar 

  • Ishido M, Masuo Y (2014) Temporal effects of bisphenol a on dopaminergic neurons: an experiment on adult rats. Open Environ Sci 8:9–17

    Article  Google Scholar 

  • Ishido M, Usu R (2017) Orally administered p-nitrotoluene causes hyperactivity, concomitantly with gliosis and impairment of tyrosine hydroxylase immunoreactivity in the rat substantia nigra. Fundam Toxicol Sci 4:151–158

    Article  CAS  Google Scholar 

  • Ishido M, Masuo Y, Oka S, Kunimoto M, Morita M (2004a) Bisphenol A causes hyperactivity in the rat concomitantly with impairment of tyrosine hydroxylase immunoreactivity. J Neurosci Res 76:422–433

    Article  Google Scholar 

  • Ishido M, Masuo Y, Suzuki J, Oka S, Niki E, Morita M (2004b) Dicyclohexylphthalate causes hyperactivity in the rat concomitantly with impairment of tyrosine hydroxylase immunoreactivity. J Neurochem 91:69–76

    Article  CAS  PubMed  Google Scholar 

  • Ishido M, Masuo Y, S-Suzuki J, Oka S, Niki E, Morita M (2004c) p-Nitrotoluene causes hyperactivity in the rat. Neurosci. Lett 366:1–5

    Article  CAS  PubMed  Google Scholar 

  • Ishido M, Morita M, Oka S, Masuo Y (2005) Alteration of gene expression of G-protein-coupled receptors in endocrine disruptors-caused hyperactive rats. Regul Pept 126:145–153

    Article  CAS  PubMed  Google Scholar 

  • Ishido M, Yonemoto J, Morita M (2007) Mesencephalic neurodegeneration in the orally administered bisphenol A-caused hyperactive rats. Toxicol Lett 173:66–72

    Article  CAS  PubMed  Google Scholar 

  • Ishido M, Masuo Y, Terasaki M, Morita M (2011) Rat hyperactivity by bisphenol a, but not by its derivatives, 3-hydroxybisphenol a or bisphenol a 3,4-quinone. Toxicol Lett 206:300–305

    Article  CAS  PubMed  Google Scholar 

  • Jacobson JL, Jacobson SW (1996) Intellectual impairment in children exposed to polychlorinated biphenyls in utero. N Engl J Med 335:783–789

    Article  CAS  PubMed  Google Scholar 

  • Kim BN, Cho SC, Kim Y, Shin MS, Yoo HJ, Kim JW, Yang YH, Kim HW, Bhang SY, Hong YC (2009) Phthalates exposure and attention-deficit/hyperactivity disorder in school-age children. Biol Psychiatry 66:958–963

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang H, Kuang H, Fan R, Cha C, Li G, Luo Z, Pang Q (2018) Relationship between bisphenol A exposure and attention-deficit/hyperactivity disorder: a case-control study for primary school children in Guangzhou, China. Environ. Pollut 235:141–149. https://doi.org/10.1016/j.envpol.2017.12.056

    Article  CAS  PubMed  Google Scholar 

  • Masuo Y, Ishido M, Morita M, Oka S (2004) Effects of neonatal treatment with 6-hydroxydopamine and endocrine disruptors on motor activity and gene expression in rats. Neural Plast 11:59–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miodovnik A, Engel SM, Zhu Z, Ye X, Soorya LV, Silva MJ, Calafat AM, Wolff MS (2011) Endocrine disruptors and childhood social impairment. NeuroToxicol 32:261–267. https://doi.org/10.1016/j.neuro.2010.12.009

    Article  CAS  Google Scholar 

  • Park SJ-M, Lee J-M, Kim J-W, Cheong JH, Yun HJ, Hong Y-C, Kim Y, Han DH, Yoo HJ, Shin M-S, Cho S-C, Kim B-N (2015) Association between phthalates and externalizing behaviors and cortical thickness in children with attention deficit hyperactivity disorder. Psychol Med 45:1601–1612. https://doi.org/10.1017/S0033291714002694

    Article  CAS  PubMed  Google Scholar 

  • Saili KS, Corvi MM, Weber DN, Patel AU, Das SR, Przybyla J, Anderson KA, Tanguay RL (2012) Neurodevelopmental low-dose bisphenol a exposure leads to early life-stage hyperactivity and learning deficits in adult zebrafish. Toxicology 291:83–92. https://doi.org/10.1016/j.tox.2011.11.001

    Article  CAS  PubMed  Google Scholar 

  • Shaywitz BA, Yager RD, Klopper JH (1976) Selective brain dopamine depletion in developing rats: an experimental model of minimal brain dysfunction. Science 191:305–308. https://doi.org/10.1126/science.942800

    Article  CAS  PubMed  Google Scholar 

  • Stein TP, Schluter MD, Steer RA, Guo L, Xue Ming X (2015) Bisphenol a exposure in children with autism Spectrum disorders. Autism Res 8:272–283

    Article  PubMed  PubMed Central  Google Scholar 

  • Tewar S, Auinger P, Braun JM, Lanphear B, Yolton K, Epstein JN, Ehrlich S, Froehlich TE (2016) Association of Bisphenol a exposure and attention-deficit/ hyperactivity disorder in a national sample of U.S. children. Environ Res 150:12–118. https://doi.org/10.1016/j.envres.2016.05.040

    Article  CAS  Google Scholar 

  • Yolton K, Xu Y, Strauss D, Altaye M, Calafat AM, Khoury J (2011) Prenatal exposure to bisphenol a and phthalates and infant neurobehavior. Neurotoxicol Teratol 33:558–566. https://doi.org/10.1016/j.ntt.2011.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakrzewski SF (2002) Environmental toxicology. Oxford University Press, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ishido, M. (2023). It Began with the Pharmacological Evaluation of Endocrine Disruptors. In: Health Risk Assessment of Environmental Chemicals. Springer, Singapore. https://doi.org/10.1007/978-981-99-1560-6_11

Download citation

Publish with us

Policies and ethics