Skip to main content

Tuning of Complex Coefficient Fractional Complex Order Controllers for a Generalized System Structure—An Optimisation Approach

  • Chapter
  • First Online:
Optimization Methods for Product and System Design

Part of the book series: Engineering Optimization: Methods and Applications ((EOMA))

  • 178 Accesses

Abstract

In general, controllers for integer, fractional and fractional complex order systems with dead time are tuned either analytically or through optimisation approaches. This is performed by accounting only the positive frequency data of the system. However, this way of controller tuning is applicable only for integer/fractional order systems containing real coefficients. These real-valued systems have an even symmetrical magnitude and odd symmetrical phase behaviour in frequency responses. Whereas for integer/fractional order systems containing complex coefficients and fractional complex order containing real/complex coefficients, an unsymmetrical behaviour is seen in its magnitude and phase responses. The conventional way of tuning controllers for such systems by considering only its positive frequency response results with reduced stability margins and in turn degrades its time response behaviour. Hence, controllers with complex coefficients are required for such systems to improve its time response and have a better stability margins. Hence, this chapter proposes complex coefficient fractional complex order controllers for such systems. An optimization approach is used to tune these controller parameters by considering both positive and negative frequency information of system with complex coefficients and complex order derivatives plus dead time. Numerical simulations are performed for a case study with the proposed and real-valued fractional order controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdolali N, Yadollahzadeh M, Rahmat D (2015) On fractional differential equation with complex order. Progr Fract Differ Appl 1(3):223–227

    Google Scholar 

  • Agashe S (1985) A new general Routh-like algorithm to determine the number of RHP roots of a real or complex polynomial. IEEE Trans Autom Control 30(4):406–409

    Article  MathSciNet  MATH  Google Scholar 

  • Aström KJ, Murray RM (2010) Feedback systems: an introduction for scientists and engineers. Princeton University Press, Princeton, New Jersy

    MATH  Google Scholar 

  • Benidir M, Picinbono B (1990) Extended table for eliminating the singularities in Routh’s array. IEEE Trans Autom Control 35(2):218–222

    Article  MathSciNet  MATH  Google Scholar 

  • Bistritz Y (1988) Stability criterion for continuous-time system polynomials with uncertain complex coefficients. IEEE Trans Circuits Syst 35(4):442–448

    Article  MathSciNet  MATH  Google Scholar 

  • Bodson M, Kiselychnyk O (2013) The complex Hurwitz test for the analysis of spontaneous self-excitation in induction generators. IEEE Trans Autom Control 58(2):449–454

    Article  MathSciNet  MATH  Google Scholar 

  • Bose NK (1989) Tests for Hurwitz and Schur properties of convex combination of complex polynomials. IEEE Trans Circuits Syst 36(9):1245–1247

    Article  MathSciNet  MATH  Google Scholar 

  • Bose N, Shi Y (1987) A simple general proof of Kharitonov’s generalized stability criterion. IEEE Trans Circuits Syst 34(10):1233–1237

    Article  MathSciNet  MATH  Google Scholar 

  • Bose N, Shi Y (1987) Network realizability theory approach to stability of complex polynomials. IEEE Trans Circuits Syst 34(2):216–218

    Article  MATH  Google Scholar 

  • Byun SW, Lee CW (1988) Pole assignment in rotating disk vibration control using complex modal state feedback. Mech Syst Signal Process 2(3):225–241

    Article  MATH  Google Scholar 

  • Chen SS, Tsai JSH (1993) A new tabular form for determining root distribution of a complex polynomial with respect to the imaginary axis. IEEE Trans Autom Control 38(10):1536–1541

    Article  MathSciNet  MATH  Google Scholar 

  • Cois O, Levron F, Oustaloup A (2001) Complex-fractional systems: modal decomposition and stability condition. In: Proceedings of European control conference, pp 1484–1489

    Google Scholar 

  • de Barros MP, Lind LF (1986) On the splitting of a complex-coefficient polynomial. IEE Proc G Electron Circuits Syst 133(2):95–98

    Article  Google Scholar 

  • Dòria-Cerezo A, Bodson M, Batlle C, Ortega R (2013) Study of the stability of a direct stator current controller for a doubly fed induction machine using the complex Hurwitz test. IEEE Trans Control Syst Technol 21(6):2323–2331

    Article  Google Scholar 

  • Dòria-Cerezo A, Bodson M (2013) Root locus rules for polynomials with complex coefficients. In: Proceedings of 21st Mediterranean conference on control and automation, pp 663–670

    Google Scholar 

  • Frank E (1946) On the zeros of polynomials with complex coefficients. Bull Am Math Soc 52(2):144–157

    Article  MathSciNet  MATH  Google Scholar 

  • Gataric S, Garrigan NR (1999) Modeling and design of three-phase systems using complex transfer functions. In: Proceedings of 30th annual IEEE power electronics specialists conference. Record. (Cat. No.99CH36321), pp 691–697

    Google Scholar 

  • Guefrachi A, Najar S, Amairi M, Abdelkrim M (2012) Frequency response of a fractional complex order transfer function. In: Proceedings of 13th international conference on sciences and techniques of automatic control and computer engineering, pp 765–773

    Google Scholar 

  • Guo X, Guerrero JM (2016) ABC-frame complex-coefficient filter and controller based current harmonic elimination strategy for three-phase grid connected inverter. J Mod Power Syst Clean Energy 4(1):87–93

    Article  Google Scholar 

  • Harnefors L (2007) Modeling of three-phase dynamic systems using complex transfer functions and transfer matrices. IEEE Trans Industr Electron 54(4):2239–2248

    Article  Google Scholar 

  • Henrion D, Ježek J, Sebek M (2002) Discrete-time symmetric polynomial equations with complex coefficients. Kybernetika 38:113–139

    MathSciNet  MATH  Google Scholar 

  • Hromcik M, Sebek M, Ježek J (2002) Complex polynomials in communications: motivation, algorithms, software. In: Proceedings of IEEE international symposium on computer aided control system design, pp 291–296

    Google Scholar 

  • Karl WC, Verghese GC (1993) A sufficient condition for the stability of interval matrix polynomials. IEEE Trans Autom Control 38(7):1139–1143

    Google Scholar 

  • Katbab A, Kraus F, Jury EI (1990) Some Schur-stability criteria for uncertain systems with complex coefficients. IEEE Trans Circuits Syst 37(9):1171–1176

    Article  MathSciNet  MATH  Google Scholar 

  • Kogan J (1993) Robust Hurwitz \(l_ p\) stability of polynomials with complex coefficients. IEEE Trans Autom Control 38(8):1304–1308

    Article  MathSciNet  MATH  Google Scholar 

  • Laurila J, Lahdelma S (2014) Advanced fault diagnosis by means of complex order derivatives. Insight-Non-Destr Test Cond Monitor 56(8):439–442

    Article  Google Scholar 

  • Love ER (1971) Fractional derivatives of imaginary order. J Lond Math Soc 2(2):241–259

    Article  MathSciNet  MATH  Google Scholar 

  • Luo Y, Chen YQ, Wang CY, Pi YG (2010) Tuning fractional order proportional integral controllers for fractional order systems. J Process Control 20(7):823–831

    Article  Google Scholar 

  • Makris N (1994) Complex-parameter Kelvin model for elastic foundations. Earthquake Eng Struct Dynam 23(3):251–264

    Article  Google Scholar 

  • Makris N, Constantinou M (1993) Models of viscoelasticity with complex-order derivatives. J Eng Mech 119(7):1453–1464

    Article  Google Scholar 

  • MATLAB. Version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts

    Google Scholar 

  • Oustaloup A, Levron F, Mathieu B, Nanot FM (2000) Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans Circuits Syst I: Fundam Theory Appl 47(1):25–39

    Article  Google Scholar 

  • Ren Y, Su D, Fang J (2013) Whirling modes stability criterion for a magnetically suspended flywheel rotor with significant gyroscopic effects and bending modes. IEEE Trans Power Electron 28(12):5890–5901

    Article  Google Scholar 

  • Ren Y, Fang J (2014) Complex-coefficient frequency domain stability analysis method for a class of cross-coupled antisymmetrical systems and its extension in MSR systems. Math Probl Eng. Article ID 765858

    Google Scholar 

  • Sathishkumar P (2019) Fractional order controllers for complex valued systems and system with multiple nonlinearities. PhD thesis, Indian Institute of Space Science and Technology

    Google Scholar 

  • Sathishkumar P, Selvaganesan N (2018) Fractional controller tuning expressions for a universal plant structure. IEEE Control Syst Lett 2(3):345–350

    Article  MathSciNet  Google Scholar 

  • Sathishkumar P, Selvaganesan N (2021) Tuning of complex coefficient PI/PD/PID controllers for a universal plant structure. Int J Control 94(11):3190–3212

    Article  MathSciNet  MATH  Google Scholar 

  • Serra FM, Dòria-Cerezo A, Bodson M (2021) A multiple-reference complex-based controller for power converters. IEEE Trans Power Electron 36(12):14466–14477

    Article  Google Scholar 

  • Troeng O, Bernhardsson B, Rivetta C (2017) Complex-coefficient systems in control. In: Proceedings of IEEE American control conference, pp 1721–1727

    Google Scholar 

  • Valério D, da Costa JS (2004) Ninteger: a non-integer control toolbox for matlab. In: Proceedings of the first IFAC workshop on fractional differentiation and applications, Bordeaux, France, pp 208–213

    Google Scholar 

  • Wang C, Luo Y, Chen YQ (2009) An analytical design of fractional order proportional integral and [proportional integral] controllers for robust velocity servo. In: Proceedings of 4th IEEE conference on industrial electronics and applications, pp 3448–3453

    Google Scholar 

  • Wang C, Luo Y, Chen YQ (2009) Fractional order proportional integral (FOPI) and [proportional integral] (FO[PI]) controller designs for first order plus time delay (FOPTD) systems. In: Proceedings of Chinese control and decision conference, pp 329–334

    Google Scholar 

  • Yang H, Zhang Y, Liang J, Xia B, Walker PD, Zhang N (2018) Deadbeat control based on a multipurpose disturbance observer for permanent magnet synchronous motors. IET Electr Power Appl 12(5):708–716

    Article  Google Scholar 

  • Yang F, Jiang F, Xu Z, Qiu L, Xu B, Zhang Y, Yang K (2022) Complex coefficient active disturbance rejection controller for current harmonics suppression of IPMSM drives. IEEE Trans Power Electron 37(9):10443–10454

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Selvaganesan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sathishkumar, P., Selvaganesan, N. (2023). Tuning of Complex Coefficient Fractional Complex Order Controllers for a Generalized System Structure—An Optimisation Approach. In: Kulkarni, A.J. (eds) Optimization Methods for Product and System Design. Engineering Optimization: Methods and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-99-1521-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1521-7_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1520-0

  • Online ISBN: 978-981-99-1521-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics