Skip to main content

Corrosion Protection Practices and Integrity Management Challenges in Oil and Gas Pipeline

  • Chapter
  • First Online:
Transportation Systems Technology and Integrated Management

Abstract

The present chapter has presented the root causes and contributing causes of the corrosion in the internal and external surfaces of the underground pipelines and their possible mitigation measures. External coating types, application methods, corrosion monitoring principles, and pipeline health assessment practices are discussed. The external surface is in contact with verities of terrain and corroding environment as it passes through long distances and is therefore vulnerable to greater challenges of pipeline surface corrosion. The internal corrosion rate is dependent on the corrosive properties of the crude oil, petroleum products, or gas being transported and the condition of the internal surface. The conditioning and preparation of the pipeline’s internal surface also help in reducing the drag. Any reduction in drag intern improves the flow rate of the service fluid in the pipeline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fernando Mainier, B., Leta Fabiana, R., Feliciano Flávio, F.: Application of anticorrosive techniques compatible with the environment to engineering education. Am. J. Environ. Eng. 4(6), 176–181 (2014)

    Google Scholar 

  2. Groysman, A.: Corrosion problems and solutions in oil, gas, refining and petrochemical industry. Koroze a ochrana materiálu 61(3), 100–117 (2017)

    Article  Google Scholar 

  3. Ossai, C.I., Boswell, B., Davies, I.J.: Pipeline failures in corrosive environments–a conceptual analysis of trends and effects. Eng. Failure Analysis 53, 36–58 (2015). https://doi.org/10.1016/j.engfailanal.2015.03.004

  4. https://www.worldofchemicals.com/media/oil-gas-corrosion-protection-underground-pipeline-protection-strategies/967.html

  5. Kumar, N.: 15-Organic coatings for underground pipelines, In: Khanna, A.S. (eds.) Woodhead Publishing Series in Metals and Surface Engineering, High-Performance Organic Coatings, Woodhead Publishing, pp. 307–336 (2008), https://doi.org/10.1533/9781845694739.3.307

  6. Jena, H., Das, T., Kumar, A.: Study of transportation prospects and safety regulations of hydrogen in Indian context: a green fuel for greener future. Mater. Today Proc. (2022). https://doi.org/10.1016/j.matpr.2022.05.481

    Article  Google Scholar 

  7. Nesˇic, S.: Key issues related to modelling of internal corrosion of oil and gas pipelines–a review. Corros. Sci. 49, 4308–4338 (2007)

    Article  Google Scholar 

  8. Sotoodeh, K.: Analysis and improvement of material selection for process piping system in offshore industry. Am. J. Mech. Eng. 6(1), 17–26 (2018)

    Article  Google Scholar 

  9. Zhao, R., Huang, Y., Yu, Y., Guo, S.: An IVTIFN–TOPSIS based computational approach for pipe materials selection. Appl. Sci. 9(24), 5457 (2019). https://doi.org/10.3390/app9245457

    Article  Google Scholar 

  10. Askari, M., Aliofkhazraei, M., Afroukhteh, S.: A comprehensive review on internal corrosion and cracking of oil and gas pipelines. J. Nat. Gas Sci. Eng. 71 (2019) https://doi.org/10.1016/j.jngse.2019.102971

  11. Kermani, M.B., Morshed, A.: Carbon dioxidecorrosion in oil and gas production-A compendium. Corrosion 59(8), 659–683 (2003)

    Article  Google Scholar 

  12. Nyborg, R.: Initiation and growth of mesa corrosion attack during CO2 corrosion of carbon steel. Paper presented at the CORROSION 98, San Diego, California, March (1998)

    Google Scholar 

  13. Chong, T.V.S., Kumar, S.B., Lai, M.O., Loh, W.L.: Effects of wet H2S containing environment on mechanical properties of NACE grade C-Mn steel pipeline girth welds. Eng. Fracture Mech. 131, 485–503 (2014)

    Article  Google Scholar 

  14. Popoola, L.T., Grema, A.S., Latinwo, G.K., Gutti, B., Balogun, A.S.: Corrosion problems during oil and gas production and its mitigation. Int. J. Indus. Chem. 4(35), 3–15 (2013)

    Google Scholar 

  15. Skovhus, T.L., Eckert, R.B.: Practical Aspects of MIC Detection, Monitoring and Management in the Oil and Gas Industry. Corrosion (2014) paper no. 3920 (Houston, TX: NACE, (2014)

    Google Scholar 

  16. Papavinasam, S.: Corrosion Control in the Oil and Gas Industry, 1–992 (2013).

    Google Scholar 

  17. Al-Moubaraki, A.H., Obot, I.B.: Top of the line corrosion: causes, mechanisms, and mitigation using corrosion inhibitors. Arab. J. Chem. 14(5), (2021). https://doi.org/10.1016/j.arabjc.2021.103116

  18. Singer, M., Camacho, A., Brown, B., Nešić, S.: Sour top-of-the-line corrosion in the presence of acetic acid. Corrosion 67 (2011). https://doi.org/10.5006/1.3615805

  19. Obot, I.B.: Under-deposit corrosion on steel pipeline surfaces: mechanism, mitigation and current challenges. J. Bio-and Tribo-Corros. 7(49) (2021). https://doi.org/10.1007/s40735-021-00485-9

  20. Pandarinathan, V., Lepková, K., Bailey, S.I., Gubner, R.: Impact of mineral deposits on co2 corrosion of carbon steel. In: NACE International (2013)

    Google Scholar 

  21. Mahajanam, S.P.V., Joosten, M.W.: Guidelines for filler-material selection to minimize preferential weld corrosion in pipeline steels. SPE Projects Facil. Constr. 6(1), 5–12(2011)

    Google Scholar 

  22. https://era.library.ualberta.ca/items/8f15c351-90f2-4805-9e34-08edb85cc928/view/04b03c58-311e-49e2-a36b-65c500350c3e/Gawor_Steffen_201909_MSc.pdf. Access 12 July 2022

  23. Papavinasam, S.: Chapter 5-mechanisms. In: Papavinasam, S. (ed.) Corrosion Control in the Oil and Gas Industry, pp 249–300. Gulf Professional Publishing (2014). https://doi.org/10.1016/B978-0-12-397022-0.00005-4.

  24. Khoma, M.S., Vasyliv, K.B., Chuchman, M.R.: Influence of the hydrogen sulfide concentration on the corrosion and hydrogenation of pipe steels (a survey). Mater. Sci. 57, 308–318 (2021). https://doi.org/10.1007/s11003-021-00546-x

    Article  Google Scholar 

  25. Wasim, M., Djukic, M.B.: External corrosion of oil and gas pipelines: a review of failure mechanisms and predictive preventions. J. Nat. Gas Sci. Eng. 100 (2022). https://doi.org/10.1016/j.jngse.2022.104467

  26. Cheng, Y.F., Niu, L.: Mechanism for hydrogen evolution reaction on pipeline steel in near-neutral pH solution. Electrochem. Commun. 9(4), 558–562 (2007). https://doi.org/10.1016/j.elecom.2006.10.035

    Article  Google Scholar 

  27. Nagu, M., Rajasekar, A., Ponmariappan, S., Mohanan, S., Maruthamuthu, S., Muralidharan, S., Subramanian, P., Palaniswamy, N., Raghavan, M.: Microbiologically influenced corrosion in petroleum product pipelines-A review. Indian J. Exp. Biol. 41, 1012–1022 (2003)

    Google Scholar 

  28. Mohtadi-Bonab, M.A.: Effects of different parameters on initiation and propagation of stress corrosion cracks in pipeline steels: a review. Metals 9(5), 590 (2019). https://doi.org/10.3390/met9050590

    Article  Google Scholar 

  29. Kim, C., Chen, L., Wang, H., Castaneda, H.: Global and local parameters for characterizing and modelling external corrosion in underground coated steel pipelines: a review of critical factors. J. Pipeline Sci. Eng. 1(1), 17–35 (2021). https://doi.org/10.1016/j.jpse.2021.01.010

    Article  Google Scholar 

  30. Thompson, I., Saithala J.R.: Review of pipeline coating systems from an operator's perspective. Corros. Eng. Sci. Technol. 51(2), 118–135(2016)

    Google Scholar 

  31. Yin, K., Yang, Y., Frank Cheng, Y.: Permeability of coal tar enamel coating to cathodic protection current on pipelines. Constr. Build. Mater. 192, 20–27 (2018). https://doi.org/10.1016/j.conbuildmat.2018.10.123

    Article  Google Scholar 

  32. Thompson, I., Saithala, J.R.: Review of pipeline coating systems from an operator's perspective. Corros. Eng. Sci. Technol. 51(2), 118–135(2016)

    Google Scholar 

  33. Byrnes, T.: 24-Pipeline coatings, In: El-Sherik, A.M. (ed.) Woodhead Publishing Series in Energy, Trends in Oil and Gas Corrosion Research and Technologies, Woodhead Publishing, pp. 563–591 (2017). ISBN 9780081011058, https://doi.org/10.1016/B978-0-08-101105-8.00024-3

  34. https://whatispiping.com/. Accessed 10 July 2022

  35. Gundogdu, S., Sahin, O.E.M.I.: Effects of cathodic protection on electromagnetic flowmeters. Sensors 7, 75–83 (2007). https://doi.org/10.3390/s7010075

    Article  Google Scholar 

  36. Al-Hazzaa, M.I., Al-Abdullatif, M.O.: Effect of soil conductivity on the design of cathodic protection systems used in the prevention of pipeline corrosion. J. King Saud Univ. Eng. Sci. 22(2), 111–116 (2010). https://doi.org/10.1016/S1018-3639(18)30498-7

    Article  Google Scholar 

  37. https://law.resource.org/pub/in/bis/S10/is.8062.4.1979.pdf. Access 12 July 2022

  38. https://pngrb.gov.in/eng-web/knowledge-sharing.html

  39. Ma, Q. et al.: Pipeline in-line inspection method, instrumentation and data management. Sensors (Basel, Switzerland) 21(11) (2021). https://doi.org/10.3390/s21113862

  40. Adjogbe, S., Okoronkwo, C., Oguoma, O., Igbokwe, J., Okwu, M.: Investigation of the effect of hydrostatic pressure testing on the microstructure of carbon steel pipeline material. AASCIT J. Mater. 4(3), 58–65 (2018)

    Google Scholar 

  41. van Os, M.T., van Mastrigt, P., Francis, A.: An external corrosion direct assessment module for a pipeline integrity management system. In: Proceedings of the 2006 International Pipeline Conference, Volume 2: Integrity Management; Poster Session; Student Paper Competition. Calgary, Alberta, Canada, 25–29 Sept 2006, pp. 249–258. ASME. https://doi.org/10.1115/IPC2006-10159

  42. Moghissi, O.C., Norris, L., Dusek, P.J., Cookingham, B.: Internal corrosion direct assessment of gas transmission pipelines. Paper presented at the CORROSION 2002, Denver, Colorado, April (2002)

    Google Scholar 

  43. Onuoha, C., McDonnell, S., Pozniak, E., Shankar, V., de Guzman, L.: Advancements in stress corrosion cracking direct assessment using an integrated approach. Paper presented at the CORROSION 2018, Phoenix, Arizona, USA, April (2018)

    Google Scholar 

  44. Glisic, B., Yao, Y.: Fiber optic method for health assessment of pipelines subjected to earthquake-induced ground movement. Struct. Health Monit. 11(6), 696–711 (2012). https://doi.org/10.1177/1475921712455683

    Article  Google Scholar 

  45. Xie, M., Tian, Z.: A review on pipeline integrity management utilizing in-line inspection data. Eng. Fail. Anal. 92, 222–239 (2018). https://doi.org/10.1016/j.engfailanal.2018.05.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemalata Jena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jena, H., Satpathy, S., Sahoo, S., Sahu, S., Nayak, B.B. (2023). Corrosion Protection Practices and Integrity Management Challenges in Oil and Gas Pipeline. In: Upadhyay, R.K., Sharma, S.K., Kumar, V., Valera, H. (eds) Transportation Systems Technology and Integrated Management. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-99-1517-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1517-0_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1516-3

  • Online ISBN: 978-981-99-1517-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics