Skip to main content

Climate Change Adaptation Strategies for Road Transportation Infrastructure: A Systematic Review on Flooding Events

  • Chapter
  • First Online:
Transportation Systems Technology and Integrated Management

Abstract

During the last decades, the number of flooding events has increased significantly, due to the global trend of urbanization and climate change, becoming a recurring biophysical impact, resulting in major physical disruption to water and wastewater systems, life and economic losses, and damage to the critical infrastructure. For the road transportation sector, this reality is indisputable, as severe flooding events tend to severely damage the transportation infrastructure and reduce the network connectivity, increasing repair, maintenance, and construction costs. Thus, through a systematic literature review, with direct database searches and application of inclusion and qualification (quality and applicability) filters, a repository of 213 publications on adaptation strategies applied to reduce the impacts of flooding on road infrastructure is developed. Most of these studies have been published since 2014, due to the publication of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. It should also be noted that, of the overall total, only 47% of studies deal specifically with the road transportation sector (the remaining 53% cite the sector only as an example), thus demonstrating the urgency of further studies on the topic. It should also be noted that the climate risk assessment, involving the creation of current and future flood risk maps, is essential for determining the best climate change adaptation strategies for road transportation infrastructure. As flood damages and costs are largely and strictly site-specific, analyses are critical for guiding land use decisions and evaluating adaptation strategies that can be divided into hard adaptation (optimization or redesign of hydraulic components, installation of protective structures and optimization of environmental conditions) and soft adaptation (creation of transportation-focused master plans and development of quantitative models and systems).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, H., Mei, C., Liu, J.H., Shao, W.W.: A New Strategy for integrated urban water management in China: Sponge City. Sci. China Technol. Sci. 61, 317–329 (2018). https://doi.org/10.1007/s11431-017-9170-5

    Article  Google Scholar 

  2. Liu, L., Yang, D.Y., Frangopol, D.M.: Network-level risk-based framework for optimal bridge adaptation management considering scour and climate change. J. Infrastruct. Syst. 26, 04019037 (2020). https://doi.org/10.1061/(asce)is.1943-555x.0000516

    Article  Google Scholar 

  3. Liu, H., Wang, Y., Zhang, C., Chen, A.S., Fu, G.: Assessing real options in urban surface water flood risk management under climate change. Nat. Hazards 94, 1–18 (2018). https://doi.org/10.1007/s11069-018-3349-1

    Article  Google Scholar 

  4. Giovannettone, J., Copenhaver, T., Burns, M., Choquette, S.: A statistical approach to mapping flood susceptibility in the lower connecticut river valley region. Water Resour. Res. 54, 7603–7618 (2018). https://doi.org/10.1029/2018WR023018

    Article  Google Scholar 

  5. Diakakis, M., Boufidis, N., Salanova Grau, J.M., Andreadakis, E., Stamos, I.: A Systematic assessment of the effects of extreme flash floods on transportation infrastructure and circulation: the example of the 2017 Mandra flood. Int. J. Disaster Risk Reduct. 47, 101542 (2020). https://doi.org/10.1016/j.ijdrr.2020.101542

  6. Goumrasa, A., Guendouz, M., Guettouche, M.S., Belaroui, A.: Flood Hazard Susceptibility Assessment in Chiffa Wadi Watershed and along the First Section of Algeria North–South Highway Using GIS and AHP Method. Appl. Geomatics 13, 565–585 (2021). https://doi.org/10.1007/s12518-021-00381-4

  7. Mukesh, M.S., Katpatal, Y.B.: Impact of the change in topography caused by road construction on the flood vulnerability of mobility on road networks in Urban areas. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 7, 1–13 (2021). https://doi.org/10.1061/ajrua6.0001137.

  8. Pregnolato, M., Ford, A., Glenis, V., Wilkinson, S., Dawson, R.: Impact of climate change on disruption to Urban transport networks from Pluvial flooding. J. Infrastruct. Syst. 23, 04017015 (2017). https://doi.org/10.1061/(asce)is.1943-555x.0000372

    Article  Google Scholar 

  9. Szewrański, S., Chruściński, J., van Hoof, J., Kazak, J.K., Świader, M., Tokarczyk-Dorociak, K., Zmuda, R.: A location intelligence system for the assessment of pluvial flooding risk and the identification of stormwater pollutant sources from roads in suburbanised areas. Water (Switzerland) 10, 1–16 (2018). https://doi.org/10.3390/w10060746

  10. Li, L., Uyttenhove, P., Van Eetvelde, V.: Planning green infrastructure to Mitigate Urban surface water flooding risk – a methodology to identify priority areas applied in the city of Ghent. Landsc. Urban Plan. 194, 103703 (2020). https://doi.org/10.1016/j.landurbplan.2019.103703

    Article  Google Scholar 

  11. Meyer, M., Flood, M., Keller, J., Lennon, J., McVoy, G., Dorney, C., Leonard, K., Hyman, R., Smith, J.: Strategic issues facing transportation, volume 2: climate change, extreme weather events, and the highway system: practitioner’s guide and research report, vol. 2 (2014); ISBN 9780309283786

    Google Scholar 

  12. Espada, R. Jr., Apan, A., McDougall, K.: Vulnerability assessment and interdependency analysis of critical infrastructures for climate adaptation and flood mitigation, vol. 6; ISBN 0120140004 (2015)

    Google Scholar 

  13. Njogu, H.W.: Effects of floods on infrastructure users in Kenya. J. Flood Risk Manag. 14, 1–10 (2021). https://doi.org/10.1111/jfr3.12746

  14. Shukla, P.R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., Belkacemi, M., Hasija, A., Lisboa, G., Luz, S., Malley, J. (eds.): IPCC, 2022: climate change 2022: mitigation of climate change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press. Cambridge (2022). https://doi.org/10.1017/9781009157926.

  15. Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., B.R. (eds): IPCC, 2022: climate change 2022: impacts, adaptation, and vulnerability. In: Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change. Cambridge Univ. Press. (2022)

    Google Scholar 

  16. Koks, E., Van Ginkel, K., Van Marle, M., Lemnitzer, A.: Brief communication: critical infrastructure impacts of the 2021 mid-July Western European flood event. Nat. Hazards Earth Syst. Sci. Discuss. [preprint, Rev., 1–11.

    Google Scholar 

  17. Pregnolato, M.; Ford, A.; Wilkinson, S.M.; Dawson, R.J. The Impact of Flooding on Road Transport: A Depth-Disruption Function. Transp. Res. Part D Transp. Environ. 2017, 55, 67–81, doi:https://doi.org/10.1016/j.trd.2017.06.020. https://doi.org/10.1016/j.trd.2017.06.020

  18. Kim, K.; Pant, P.; Yamashita, E. Integrating Travel Demand Modeling and Flood Hazard Risk Analysis for Evacuation and Sheltering. Int. J. Disaster Risk Reduct. 2018, 31, 1177–1186. https://doi.org/10.1016/j.ijdrr.2017.10.025

  19. Hooper, E., Chapman, L., Quinn, A.: The Impact of Precipitation on Speed-Flow Relationships along a UK Motorway Corridor. Theor. Appl. Climatol. 117, 303–316 (2014). https://doi.org/10.1007/s00704-013-0999-5

    Article  Google Scholar 

  20. Fitzgerald, G., Du, W., Jamal, A., Clark, M., Hou, X.Y.: Flood Fatalities in Contemporary Australia (1997–2008): Disaster Medicine. EMA - Emerg. Med. Australas. 22, 180–186 (2010). https://doi.org/10.1111/j.1742-6723.2010.01284.x

    Article  Google Scholar 

  21. Kermanshah, A., Derrible, S., Berkelhammer, M.: Using Climate Models to Estimate Urban Vulnerability to Flash Floods. J. Appl. Meteorol. Climatol. 56, 2637–2650 (2017). https://doi.org/10.1175/JAMC-D-17-0083.1

    Article  Google Scholar 

  22. Sayers, P..; Horritt, M.S.; Penning-Rowsell, E.; McKenzie, A. Climate Change Risk Assessment 2017 Projections of Future Flood Risk in the UK Project A: Report Prepared for the Committee on Climate Change, UK. 2017, 126.

    Google Scholar 

  23. Kalantari, Z., Folkeson, L.: Road Drainage in Sweden: Current Practice and Suggestions for Adaptation to Climate Change. J. Infrastruct. Syst. 19, 147–156 (2013). https://doi.org/10.1061/(asce)is.1943-555x.0000119

    Article  Google Scholar 

  24. Dong, X., Guo, H., Zeng, S.: Enhancing Future Resilience in Urban Drainage System: Green versus Grey Infrastructure. Water Res. 124, 280–289 (2017). https://doi.org/10.1016/j.watres.2017.07.038

    Article  Google Scholar 

  25. Galvão, C.M., Sawada, N.O., Trevizan, M.A.: Revisão Sistemática: Recurso Que Proporciona a Incorporação Das Evidências Na Prática Da Enfermagem. Rev. Lat. Am. Enfermagem 12, 549–556 (2004). https://doi.org/10.1590/s0104-11692004000300014

    Article  Google Scholar 

  26. Zupic, I., Čater, T.: Bibliometric Methods in Management and Organization. Organ. Res. Methods 18, 429–472 (2015). https://doi.org/10.1177/1094428114562629

    Article  Google Scholar 

  27. Bajdor, P.; Starostka-Patyk, M. Smart City: A Bibliometric Analysis of Conceptual Dimensions and Areas. Energies 2021, 14, doi:https://doi.org/10.3390/en14144288.

  28. Tijssen, R.J.W. Handbook of Quantitative Science and Technology Research; 2005; ISBN 1402027559.

    Google Scholar 

  29. Daim, T.U., Rueda, G., Martin, H., Gerdsri, P.: Forecasting Emerging Technologies: Use of Bibliometrics and Patent Analysis. Technol. Forecast. Soc. Change 73, 981–1012 (2006). https://doi.org/10.1016/j.techfore.2006.04.004

    Article  Google Scholar 

  30. Abreu, V. H. S., Santos, A. S., Monteiro, T.G.M. Climate Change Impacts on the Road Transport Infrastructure: A Systematic Review on Adaptation Measures. Sustainability 2022.

    Google Scholar 

  31. Wang, T., Qu, Z., Yang, Z., Nichol, T., Clarke, G., Ge, Y.E.: Climate Change Research on Transportation Systems: Climate Risks, Adaptation and Planning. Transp. Res. Part D Transp. Environ. 88, 102553 (2020). https://doi.org/10.1016/j.trd.2020.102553

    Article  Google Scholar 

  32. IPCC Climate Change 2014 Part A: Global and Sectoral Aspects; 2014; ISBN 9781107641655.

    Google Scholar 

  33. Nowak, P.; Mickiewicza, U.A.; Pedago-, W. Uki . Podej ś Cie Bibliometryczne i Webometryczne , Pozna Ń : 2009, 13, 235–240.

    Google Scholar 

  34. Zahmatkesh, Z., Burian, S.J., Karamouz, M., Tavakol-Davani, H., Goharian, E.: Low-Impact Development Practices to Mitigate Climate Change Effects on Urban Stormwater Runoff: Case Study of New York City. J. Irrig. Drain. Eng. 141, 04014043 (2015). https://doi.org/10.1061/(asce)ir.1943-4774.0000770

    Article  Google Scholar 

  35. Mei, C., Liu, J., Wang, H., Yang, Z., Ding, X., Shao, W.: Integrated Assessments of Green Infrastructure for Flood Mitigation to Support Robust Decision-Making for Sponge City Construction in an Urbanized Watershed. Sci. Total Environ. 639, 1394–1407 (2018). https://doi.org/10.1016/j.scitotenv.2018.05.199

    Article  Google Scholar 

  36. Argyroudis, S.A., Mitoulis, S., Winter, M.G., Kaynia, A.M.: Fragility of Transport Assets Exposed to Multiple Hazards: State-of-the-Art Review toward Infrastructural Resilience. Reliab. Eng. Syst. Saf. 191, 106567 (2019). https://doi.org/10.1016/j.ress.2019.106567

    Article  Google Scholar 

  37. Selva, N., Kreft, S., Kati, V., Schluck, M., Jonsson, B.G., Mihok, B., Okarma, H., Ibisch, P.L.: Roadless and Low-Traffic Areas as Conservation Targets in Europe. Environ. Manage. 48, 865–877 (2011). https://doi.org/10.1007/s00267-011-9751-z

    Article  Google Scholar 

  38. Charlesworth, S.M.: A Review of the Adaptation and Mitigation of Global Climate Change Using Sustainable Drainage in Cities. J. Water Clim. Chang. 1, 165–180 (2010). https://doi.org/10.2166/wcc.2010.035

    Article  Google Scholar 

  39. Sterr, H.: Assessment of Vulnerability and Adaptation to Sea-Level Rise for the Coastal Zone of Germany. J. Coast. Res. 24, 380–393 (2008). https://doi.org/10.2112/07A-0011.1

    Article  Google Scholar 

  40. Chinowsky, P.S.; Price, J.C.; Neumann, J.E. Assessment of Climate Change Adaptation Costs for the U.S. Road Network. Glob. Environ. Chang. 2013, 23, 764–773, doi:https://doi.org/10.1016/j.gloenvcha.2013.03.004.

  41. Van Noorden, R. Global Scientific Output Doubles Every Nine Years : News Blog. Newsblog Nat. brings you Break. News from World Sci. 2014, post.

    Google Scholar 

  42. Neumann, J.E., Price, J., Chinowsky, P., Wright, L., Ludwig, L., Streeter, R., Jones, R., Smith, J.B., Perkins, W., Jantarasami, L., et al.: Climate Change Risks to US Infrastructure: Impacts on Roads, Bridges, Coastal Development, and Urban Drainage. Clim. Change 131, 97–109 (2015). https://doi.org/10.1007/s10584-013-1037-4

    Article  Google Scholar 

  43. Denich, C., Zaghal, A.: Designing for Environmental and Infrastructure Sustainability: Ontario Case Studies for Retrofits and New Developments. J. Green Build. 9, 40–59 (2014). https://doi.org/10.3992/1943-4618-9.1.40

    Article  Google Scholar 

  44. Picketts, I.M., Andrey, J., Matthews, L., Déry, S.J., Tighe, S.: Climate Change Adaptation Strategies for Transportation Infrastructure in Prince George Canada. Reg. Environ. Chang. 16, 1109–1120 (2016). https://doi.org/10.1007/s10113-015-0828-8

    Article  Google Scholar 

  45. Abkowitz, M., Jones, A., Dundon, L., Camp, J.: Performing A Regional Transportation Asset Extreme Weather Vulnerability Assessment. Transp. Res. Procedia 25, 4422–4437 (2017). https://doi.org/10.1016/j.trpro.2017.05.344

    Article  Google Scholar 

  46. Arkell, B.P., Darch, G.J.C.: Impact of Climate Change on London’s Transport Network. Proc. Inst. Civ. Eng. Munic. Eng. 159, 231–237 (2006). https://doi.org/10.1680/muen.2006.159.4.231

    Article  Google Scholar 

  47. Arndt, C., Strzepeck, K., Tarp, F., Thurlow, J., Fant, C., Wright, L.: Adapting to Climate Change: An Integrated Biophysical and Economic Assessment for Mozambique. Sustain. Sci. 6, 7–20 (2011). https://doi.org/10.1007/s11625-010-0118-9

    Article  Google Scholar 

  48. le Roux, A., Khuluse-Makhanya, S., Arnold, K., Engelbrecht, F., Paige-Green, P., Verhaeghe, B.: A Framework for Assessing the Risks and Impacts of Rural Access Roads to a Changing Climate. Int. J. Disaster Risk Reduct. 38, 101175 (2019). https://doi.org/10.1016/j.ijdrr.2019.101175

    Article  Google Scholar 

  49. Chinowsky, P.S., Schweikert, A.E., Strzepek, N., Strzepek, K.: Road Infrastructure and Climate Change in Vietnam. Sustain. 7, 5452–5470 (2015). https://doi.org/10.3390/su7055452

    Article  Google Scholar 

  50. Porter, J.R.; Shu, E.; Amodeo, M.; Hsieh, H.; Chu, Z.; Freeman, N. Community Flood Impacts and Infrastructure: Examining National Flood Impacts Using a High Precision Assessment Tool in the United States. Water (Switzerland) 2021, 13, doi:https://doi.org/10.3390/w13213125.

  51. Apel, H.; Martínez Trepat, O.; Nghia Hung, N.; Thi Chinh, D.; Merz, B.; Viet Dung, N. Combined Fluvial and Pluvial Urban Flood Hazard Analysis: Concept Development and Application to Can Tho City, Mekong Delta, Vietnam. Nat. Hazards Earth Syst. Sci. 2016, 16, 941–961. https://doi.org/10.5194/nhess-16-941-2016

  52. Lu, D., Tighe, S.L., Xie, W.C.: Pavement Risk Assessment for Future Extreme Precipitation Events under Climate Change. Transp. Res. Rec. 2672, 122–131 (2018). https://doi.org/10.1177/0361198118781657

    Article  Google Scholar 

  53. Vajjarapu, H., Verma, A.: Composite Adaptability Index to Evaluate Climate Change Adaptation Policies for Urban Transport. Int. J. Disaster Risk Reduct. 58, 102205 (2021). https://doi.org/10.1016/j.ijdrr.2021.102205

    Article  Google Scholar 

  54. Pregnolato, M., Ford, A., Dawson, R.: Disruption and adaptation of urban transport networks from flooding. E3S Web Conf. 7, 1–8 (2016). https://doi.org/10.1051/e3sconf/20160707006

  55. Olsen, A.S.; Zhou, Q.; Linde, J.J.; Arnbjerg-Nielsen, K. Comparing Methods of Calculating Expected Annual Damage in Urban Pluvial Flood Risk Assessments. Water (Switzerland) 2015, 7, 255–270. https://doi.org/10.3390/w7010255

  56. Keller, S., Atzl, A.: Mapping natural hazard impacts on road infrastructure—the extreme precipitation in Baden-Württemberg, Germany, June 2013. Int. J. Disaster Risk Sci. 5, 227–241 (2014). https://doi.org/10.1007/s13753-014-0026-1

    Article  Google Scholar 

  57. Dasgupta, S.; Huq, M.; Khan, Z.H.; Masud, M.S.; Ahmed, M.M.Z.; Mukherjee, N.; Pandey, K. Climate Proofing Infrastructure in Bangladesh: The Incremental Cost of Limiting Future Flood Damage. J. Environ. Dev. 2011, 20, 167–190. https://doi.org/10.1177/1070496511408401

  58. Heberger, M.; Cooley, H.; Herrera, P.; Gleick, P.H.; Moore, E. Potential Impacts of Increased Coastal Flooding in California Due to Sea-Level Rise. Clim. Change 2011, 109, 229–249. https://doi.org/10.1007/s10584-011-0308-1

  59. Sadler, J.M.; Haselden, N.; Mellon, K.; Hackel, A.; Son, V.; Mayfield, J.; Blase, A.; Goodall, J.L. Impact of Sea-Level Rise on Roadway Flooding in the Hampton Roads Region, Virginia. J. Infrastruct. Syst. 2017, 23, 1–7. https://doi.org/10.1061/(asce)is.1943-555x.0000397

  60. Bollinger, L.A.; Bogmans, C.W.J.; Chappin, E.J.L.; Dijkema, G.P.J.; Huibregtse, J.N.; Maas, N.; Schenk, T.; Snelder, M.; van Thienen, P.; de Wit, S.; et al. Climate Adaptation of Interconnected Infrastructures: A Framework for Supporting Governance. Reg. Environ. Chang. 2014, 14, 919–931. https://doi.org/10.1007/s10113-013-0428-4

  61. Lambert, J.H., Wu, Y.-J., You, H., Clarens, A., Smith, B.: Climate change influence on priority setting for transportation infrastructure assets. J. Infrastruct. Syst. 19, 36–46 (2013). https://doi.org/10.1061/(asce)is.1943-555x.0000094

    Article  Google Scholar 

  62. Poussin, J.K., Botzen, W.J.W., Aerts, J.C.J.H.: Stimulating flood damage mitigation through insurance: an assessment of the French catnat system. Environ. Hazards 12, 258–277 (2013). https://doi.org/10.1080/17477891.2013.832650

    Article  Google Scholar 

  63. Kalantari, Z., Cavalli, M., Cantone, C., Crema, S., Destouni, G.: Flood probability quantification for road infrastructure: data-driven spatial-statistical approach and case study applications. Sci. Total Environ. 581–582, 386–398 (2017). https://doi.org/10.1016/j.scitotenv.2016.12.147

    Article  Google Scholar 

  64. Michielsen, A., Kalantari, Z., Lyon, S.W., Liljegren, E.: Predicting and communicating flood risk of transport infrastructure based on watershed characteristics. J. Environ. Manage. 182, 505–518 (2016). https://doi.org/10.1016/j.jenvman.2016.07.051

    Article  Google Scholar 

  65. Cantone, C.: Modelling sediment connectivity in Swedish catchments and application for Flood prediction of roads (2016)

    Google Scholar 

  66. Schmidt, N., Meyer, M.D.: Incorporating climate change considerations into transportation planning. Transp. Res. Rec. 66–73 (2009). https://doi.org/10.3141/2119-09

  67. Adger, W.N., Arnell, N.W., Tompkins, E.L.: Successful adaptation to climate change across scales. Glob. Environ. Chang. 15, 77–86 (2005). https://doi.org/10.1016/j.gloenvcha.2004.12.005

    Article  Google Scholar 

  68. Pochwat, K., Słyś, D., Kordana, S.: The Temporal variability of a rainfall synthetic hyetograph for the dimensioning of stormwater retention tanks in small urban catchments. J. Hydrol. 549, 501–511 (2017). https://doi.org/10.1016/j.jhydrol.2017.04.026

    Article  Google Scholar 

  69. Hanak, E., Lund, J.R.: Adapting California’s water management to climate change. Clim. Change 111, 17–44 (2012). https://doi.org/10.1007/s10584-011-0241-3

    Article  Google Scholar 

  70. Sharifi, A.: Co-benefits and synergies between urban climate change mitigation and adaptation measures: a literature review. Sci. Total Environ. 750 (2021). https://doi.org/10.1016/j.scitotenv.2020.141642

  71. Copeland, C.: Green Infrastructure and Issues in Managing Urban Stormwater. Sel. Issues Water Resour. Manag., 79–113 (2013)

    Google Scholar 

  72. Grafakos, S., Trigg, K., Landauer, M., Chelleri, L., Dhakal, S.: Analytical framework to evaluate the level of integration of climate adaptation and mitigation in cities. Clim. Change 154, 87–106 (2019). https://doi.org/10.1007/s10584-019-02394-w

    Article  Google Scholar 

  73. Kim, D., Kang, J.E.: Integrating climate change adaptation into community planning using a participatory process: the case of Saebat Maeul Community in Busan, Korea. Environ. Plan. B Urban Anal. City Sci. 6, 45, 669–690 (2016). https://doi.org/10.1177/0265813516683188

  74. Kapetas, L., Fenner, R.: Integrating blue-green and grey infrastructure through an adaptation pathways approach to surface water flooding. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378 (2020). https://doi.org/10.1098/rsta.2019.0204

  75. Arthur, S., Vladimir Krivtsov, D.A.: Blue-green infrastructure – perspectives on water quality benefits, ISBN 9780860177999 (2019)

    Google Scholar 

  76. Zimmerman, R., Faris, C.: Chapter 4: infrastructure impacts and adaptation challenges. Ann. N. Y. Acad. Sci. 1196, 42–51 (2010)

    Google Scholar 

  77. Briefing, S.: Impacts, C.C. TRANSPORT (Roads). ADB (2012)

    Google Scholar 

  78. Nazarnia, H., Nazarnia, M., Sarmasti, H., Wills, W.O.: A systematic review of civil and environmental infrastructures for coastal adaptation to sea level rise. Civ. Eng. J. 6, 1375–1399 (2020). https://doi.org/10.28991/cej-2020-03091555

    Article  Google Scholar 

  79. Doogie, B.: Nick Pyatt of climate sense SUTP: adapting urban transport to climate change. Sustain. Transp. A Sourceb. Policy-makers Dev. Cities 70 (2021)

    Google Scholar 

  80. Chapman, L.: A climate change report card for infrastructure working technical paper transport : road transport (Inc . Cycling and Walking ) Dr. Lee Chapman reader in climate resilience school of geography. Earth Environ. Sci. Univ. Birm., 1–20 (2019)

    Google Scholar 

  81. Vajjarapu, H., Verma, A., Gulzar, S.: Adaptation policy framework for climate change impacts on transportation sector in developing countries. Transp. Dev. Econ. 5 (2019). https://doi.org/10.1007/s40890-019-0071-y.

  82. Vajjarapu, H., Verma, A., Hemanthini, A.R.: Evaluating mitigation and adaptation policies for transport sector using GIS—case study of Bangalore. Geospatial Infrastruct. Appl. Technol. India Case Stud. 235–255 (2018)

    Google Scholar 

  83. DTTAS Climate Change Sectoral Adaptation Plan for Transport Sector in Ireland, 112 (2019)

    Google Scholar 

  84. Urs Adapting Energy: Transport and water infrastructure to the long-term impacts of climate change summary report adapting energy, transport and water infrastructure to the long-term impacts of climate change summary report. Transport, 114 (2010)

    Google Scholar 

  85. Löwe, R., Urich, C., Sto. Domingo, N., Mark, O., Deletic, A., Arnbjerg-Nielsen, K.: Assessment of urban pluvial flood risk and efficiency of adaptation options through simulations – a new generation of urban planning tools. J. Hydrol. 550, 355–367 (2017). https://doi.org/10.1016/j.jhydrol.2017.05.009.

  86. Arrighi, C., Pregnolato, M., Castelli, F.: Indirect flood impacts and cascade risk across interdependent linear infrastructures. Nat. Hazards Earth Syst. Sci. 21, 1955–1969 (2021). https://doi.org/10.5194/nhess-21-1955-2021

    Article  Google Scholar 

  87. Najafi, M.R., Zhang, Y., Martyn, N.: A flood risk assessment framework for interdependent infrastructure systems in coastal environments. Sustain. Cities Soc. 64, 102516 (2021). https://doi.org/10.1016/j.scs.2020.102516

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the AdaptaVias Project, which is an effort undertaken by the Ministry of Infrastructure (Ministério da Infraestrutura—MInfra, in Portuguese), within the framework of the Memorandum of Understanding signed with the Deutsche Gesellschaft fur Internationale Zusammenarbeit (GIZ) GmbH in Brazil, which is supported by the Ministry of Science, Technology and Innovations (Ministério da Ciência, Tecnologia e Inovações—MCTI, in Portuguese) and the National Institute for Space Research (Instituto Nacional de Pesquisas Espaciais—Inpe, in Portuguese). In addition, this work was supported by Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro, under grants #2021007191. This study was also financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Souza Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Abreu, V.H.S., Monteiro, T.G.M., de Oliveira Vasconcelos, A., Santos, A.S. (2023). Climate Change Adaptation Strategies for Road Transportation Infrastructure: A Systematic Review on Flooding Events. In: Upadhyay, R.K., Sharma, S.K., Kumar, V., Valera, H. (eds) Transportation Systems Technology and Integrated Management. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-99-1517-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1517-0_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1516-3

  • Online ISBN: 978-981-99-1517-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics