Skip to main content

Part of the book series: Environmental Science and Engineering ((ESE))

Included in the following conference series:

  • 202 Accesses

Abstract

Stable partial nitrosation is important for processes based on anaerobic ammonia oxidation. In this study, an up-flow sludge fixed-bed reactor filled with natural zeolites at the bottom was used, under the condition that no organic carbon source is added, after gradually increasing the influent ammonia nitrogen load (ALR). At d 21, stable partial nitrosation was successfully initiated. The results showed that the influent ammonia nitrogen load was 0.5451 kg/(m3 d) at an HRT of 16 h. The nitrite accumulation rate (NAR) of the system was 91.52% at this time, and the nitrite yield was 0.2384 kg/(m3 d), and the effluent met the anaerobic ammonia oxidation influent requirements. After reducing the influent ammonia nitrogen concentration to 250 mg/L, the system nitrosation stability was disrupted and the NAR dropped to a minimum of 21.35%, but after restoring the influent ammonia nitrogen concentration, the system NAR was restored to 92.79% after only 6 d. The inhibition of nitrite oxidising bacteria (NOB) by ammonia nitrogen loading is an important reason why stable nitrification is achieved. Zeolite dosing allows the system to quickly recover nitrosation performance when the influent ammonia nitrogen concentration fluctuates. Stable partial nitrosation anaerobic ammonia oxidation process laid the foundation for stable application in engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. OlavSliekersa, A., Derworta, N., CamposGomezb, J.L., et al.: Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Res. 36(10), 2475–2482 (2002). https://doi.org/10.1016/S0043-1354(01)00476-6

    Article  Google Scholar 

  2. Tang, J., Xie, J., Chen, Z., et al.: Carbon neutral technology and case study of urban wastewater treatment plant. Chem. Ind. Eng. Prog. 41(05), 2662–2671 (2022)

    Google Scholar 

  3. Ji, J., Peng, Y., Li, X., et al.: A novel partial nitrification-synchronous anammox and endogenous partial denitrification (PN-SAEPD) process for advanced nitrogen removal from municipal wastewater at ambient temperatures. Water Res. 175 (2020)

    Google Scholar 

  4. Cao, Y., van Loosdrecht, M.C.M., Daigger, G.T.: Mainstream partial nitritation–anammox in municipal wastewater treatment: status, bottlenecks, and further studies. Appl. Microbiol. Biotechnol. 101(4), 1365–1383 (2017). https://doi.org/10.1007/s00253-016-8058-7

    Article  CAS  Google Scholar 

  5. Gu, J., Yang, Q., Liu, Y.: Mainstream anammox in a novel A-2B process for energy-efficient municipal wastewater treatment with minimized sludge production. Water Res. 138, 1–6 (2018)

    Article  CAS  Google Scholar 

  6. Reino, C., Suárez-Ojeda, M.E., Pérez, J., Carrera, J.: Stable long-term operation of an upflow anammox sludge bed reactor at mainstream conditions. Water Res. 128, 331–340 (2018). https://doi.org/10.1016/j.watres.2017.10.058

    Article  CAS  Google Scholar 

  7. Li, N., XiaoMin, H., Li, G., et al.: Effect of HRT and pH on short-range nitrification and denitrification in MBBR. Ind. Water Treat. 10(36), 20–23 (2016)

    Google Scholar 

  8. Qian, R., Jiang, H., Liu, S., et al.: Carbon capture pretreatment of black water based on controlled aeration method for partial nitrosation nitrification process. Chinese J. Environ. Eng. 04(16), 1353–1362 (2022)

    Google Scholar 

  9. Blackburne, R., Yuan, Z., Keller, J.: Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor. Biodegradation 19(2), 303–312 (2008). https://doi.org/10.1007/s10532-007-9136-4

    Article  CAS  Google Scholar 

  10. Yao, Q., Peng, D., Wang, B., et al.: Effect of free ammonium and free nitrous acid on the activity, aggregate morphology and EPS distribution of ammonium oxidizing bacteria in partial nitrification. J. Biosci. Bioeng. 124(3), 319–326 (2017)

    Article  CAS  Google Scholar 

  11. Chen, Z., Wanga, X., Chen, X., et al.: Nitrogen removal via nitritation pathway for low-strength ammonium wastewater by adsorption, biological desorption and denitrification. Biores. Technol. 267, 541–549 (2018)

    Article  CAS  Google Scholar 

  12. Chen, J., Zhang, L., Zhang, S., et al.: Influence of ammonia nitrogen load fluctuations on the nitrate state of short-course nitrification-anaerobic ammonia oxidation process in municipal wastewater nitrogen. China Environ. Sci. 37(02), 520–525 (2017)

    Google Scholar 

  13. Wang, H., KunMing, F., Zuo, Z., et al.: Effect of hydraulic retention time and dissolved oxygen on vitrified CANON reactors. Environ. Sci. 36(11), 4141–4147 (2015)

    Google Scholar 

  14. Xue, Y., Yang, F., Liu, S., et al.: The influence of controlling factors on the start-up and operation for partial nitrification in membrane bioreactor. Biores. Technol. 100(3), 1055–1060 (2009)

    Article  CAS  Google Scholar 

  15. Tian, W.-D., An, K.-J., Ma, C., et al.: Partial nitritation for subsequent anammox to treat high-ammonium leachate. Environ. Technol. 34(8), 1063–1068 (2013)

    Article  CAS  Google Scholar 

  16. Yang, Z., KunMing, F., Liao, M., et al.: Exploration of inhibition strategies of 2 nitrite oxidizing bacteria during short-range nitrification. Chin. J. Environ. Eng. 13(1), 222–231 (2019)

    Google Scholar 

  17. Wang, R., Chen, J., Wang, X., et al.: Effect of alkalinity on nitrosation in zeolite sequencing batch reactors. Environ. Sci. 40(6), 2807–2812 (2019)

    Google Scholar 

  18. Capodici, M., Corsino, S.F., Di Trapani, D., et al.: Achievement of partial nitrification under different carbon-to-nitrogen ratio and ammonia loading rate for the co-treatment of landfill leachate with municipal wastewater. Biochem. Eng. J. 149 (2019)

    Google Scholar 

  19. Okabe, S., Oshiki, M., Takahashi, Y., et al.: Development of long-term stable partial nitrification and subsequent anammox process. Biores. Technol. 102(13), 6801–6807 (2011)

    Article  CAS  Google Scholar 

  20. Zhong, P., Wang, X., Qin, J., et al.: Continuous flow zeolite SBR for stable nitrosation of high ammonia nitrogen wastewater. Technol. Water Treat. 48(2), 93–97 (2022)

    Google Scholar 

Download references

Acknowledgments

This work was funded by Fujian provincial industry-universityresearch collaborative innovation (2021Y4005), Fujian Science and Technology Guiding Project (2020Y0056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShuGuang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, J., Fu, H., Wu, Y., Zheng, Y., Wang, S. (2023). Initiation and Recovery of Nitrosation in Zeolite Bioreactors. In: Chen, X. (eds) Proceedings of the 2022 12th International Conference on Environment Science and Engineering (ICESE 2022). ICESE 2022. Environmental Science and Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-99-1381-7_2

Download citation

Publish with us

Policies and ethics