Skip to main content

Drugs of Abuse: Trends and Advanced Analytical Methods

  • Chapter
  • First Online:
Textbook of Forensic Science
  • 537 Accesses

Abstract

Abuse of drugs is correlated with various medical, behavioral, psychological, spiritual, financial, social, family, and legal concerns and profoundly impact the people involved, their families, and society. Drugs of abuse (DOA) testing in biological specimens may provide objective information on the usage or misuse of drugs by the person involved and thus it is considered as one of the main tasks in the different disciplines of forensic toxicology and related areas. Testing is carried out for two primary reasons. The first is to test for or prove an alleged acute drug effect or intoxication/poisoning. The second is monitoring abstinence from DOA, e.g., in workplace drug testing.

This chapter deals with the types and methods of analysis for DOA testing that focus on trends and developments in the last decade regarding relevant analytes and analytical methodology. The authors often rely on alternative matrices for monitoring DOAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aacc.org (2021) Developing standards for oral fluid as an alternative matrix for toxicology testing. AACC.org. Available https://www.aacc.org/cln/articles/2017/november/developing-standards-for-oral-fluid-as-an-alternative-matrix-for-toxicology-testing. Accessed 1 March 2021

  • Abdallah IA, Hammell DC, Stinchcomb AL, Hassan HE (2016) A fully validated LC–MS/MS method for simultaneous determination of nicotine and its metabolite cotinine in human serum and its application to a pharmacokinetic study after using nicotine transdermal delivery systems with standard heat application in adult smokers. J Chromatogr B 1020:67–77

    Article  Google Scholar 

  • Abubakar II, Tillmann T, Banerjee A (2015) Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385(9963):117–171

    Article  Google Scholar 

  • Agius R, Nadulski T, Kahl HG, Dufaux B (2012) Significantly increased detection rate of drugs of abuse in urine following the introduction of new German driving licence regranting guidelines. Forensic Sci Int 215(1-3):32–37

    Article  CAS  PubMed  Google Scholar 

  • Ammann J, McLaren JM, Gerostamoulos D, Beyer J (2012) Detection and quantification of new designer drugs in human blood: part 1–synthetic cannabinoids. J Anal Toxicol 36(6):372–380

    Article  CAS  PubMed  Google Scholar 

  • Australian/New Zealand Specialist Advisory Group in Toxicology (2012) MS identification guidelines in forensic toxicology – an Australian approach. TIAFT Bull 42(2):52–55

    Google Scholar 

  • Baumgartner MR (2014) Nails: an adequate alternative matrix in forensic toxicology for drug analysis? Bioanalysis 6(17):2189–2191

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner MR, Guglielmello R, Fanger M, Kraemer T (2012) Analysis of drugs of abuse in hair: evaluation of the immunochemical method VMA-T vs. LC–MS/MS or GC–MS. Forensic Sci Int 215(1-3):56–59

    Article  CAS  PubMed  Google Scholar 

  • Blencowe T, Pehrsson A, Lillsunde P, Vimpari K, Houwing S, Smink B, Verstraete A (2011) An analytical evaluation of eight on-site oral fluid drug screening devices using laboratory confirmation results from oral fluid. Forensic Sci Int 208(1-3):173–179

    Article  CAS  PubMed  Google Scholar 

  • Bogusz MJ (1999) Hyphenated liquid chromatographic techniques in forensic toxicology. J Chromatogr B Biomed Sci Appl 733(1-2):65–91

    Article  CAS  PubMed  Google Scholar 

  • Bogusz MJ, Maier RD, Erkens M, Driessen S (1997) Determination of morphine and its 3-and 6-glucuronides, codeine, codeine-glucuronide and 6-monoacetylmorphine in body fluids by liquid chromatography atmospheric pressure chemical ionization mass spectrometry. J Chromatogr B Biomed Sci Appl 703(1-2):115–127

    Article  CAS  PubMed  Google Scholar 

  • Bogusz MJ, Maier RD, Krüger KD, Kohls U (1998) Determination of common drugs of abuse in body fluids using one isolation procedure and liquid chromatography-atmospheric-pressure chemical-ionization mass spectrometry. J Anal Toxicol 22(7):549–558

    Article  CAS  PubMed  Google Scholar 

  • Bogusz MJ, Maier RD, Erkens M, Kohls U (2001) Detection of non-prescription heroin markers in urine with liquid chromatography—atmospheric pressure chemical ionization mass spectrometry. J Anal Toxicol 25(6):431–438

    Article  CAS  PubMed  Google Scholar 

  • Bosker WM, Huestis MA (2009) Oral fluid testing for drugs of abuse. Clin Chem 55(11):1910–1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caplan YH, Goldberger BA (2001) Alternative specimens for workplace drug testing. J Anal Toxicol 25(5):396–399

    Article  CAS  PubMed  Google Scholar 

  • CDPHE (Colorado Department of Public Health and Environment) (2016) 2016 medical marijuana registry statistics. https://www.colorado.gov/pacific/cdphe/2016-medical-marijuana-registry-statistics

  • Chèze M, Duffort G, Deveaux M, Pépin G (2005) Hair analysis by liquid chromatography–tandem mass spectrometry in toxicological investigation of drug-facilitated crimes: report of 128 cases over the period June 2003–May 2004 in metropolitan Paris. Forensic Sci Int 153(1):3–10

    Article  PubMed  Google Scholar 

  • Choo RE, Murphy CM, Jones HE, Huestis MA (2005) Determination of methadone, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine, 2-ethyl-5-methyl-3, 3-diphenylpyraline and methadol in meconium by liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry. J Chromatogr B 814(2):369–373

    Article  CAS  Google Scholar 

  • Concheiro M, de Castro A, Quintela O, Cruz A, Lopez-Rivadulla M (2004) Chromatogr B 810:319

    Article  CAS  Google Scholar 

  • Concheiro M, Simoes SMDSS, Quintela O, de Castro A, Dias MJR, Cruz A, López-Rivadulla M (2007) Fast LC–MS/MS method for the determination of amphetamine, methamphetamine, MDA, MDMA, MDEA, MBDB and PMA in urine. Forensic Sci Int 171(1):44–51

    Article  CAS  PubMed  Google Scholar 

  • Cone EJ (1997) New developments in biological measures of drug prevalence. NIDA Res Monogr 167:108–129

    CAS  PubMed  Google Scholar 

  • Dams R, Murphy CM, Lambert WE, Huestis MA (2003) Urine drug testing for opioids, cocaine, and metabolites by direct injection liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 17(14):1665–1670

    Article  CAS  PubMed  Google Scholar 

  • Dams R, Choo RE, Lambert WE, Jones H, Huestis MA (2007) Oral fluid as an alternative matrix to monitor opiate and cocaine use in substance-abuse treatment patients. Drug Alcohol Depend 87(2-3):258–267

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta A (2007) Handbook of drug monitoring methods: therapeutics and drugs of abuse. Springer, New York

    Google Scholar 

  • Dolan K, Rouen D, Kimber JO (2004) An overview of the use of urine, hair, sweat and saliva to detect drug use. Drug Alcohol Rev 23(2):213–217

    Article  PubMed  Google Scholar 

  • Dolder PC, Liechti ME, Rentsch KM (2018) Development and validation of an LC-MS/MS method to quantify lysergic acid diethylamide (LSD), iso-LSD, 2-oxo-3-hydroxy-LSD, and nor-LSD and identify novel metabolites in plasma samples in a controlled clinical trial. J Clin Lab Anal 32(2):e22265

    Article  PubMed  Google Scholar 

  • Drummer OH (2004) Postmortem toxicology of drugs of abuse. Forensic Sci Int 142(2-3):101–113

    Article  CAS  PubMed  Google Scholar 

  • Drummer OH (2006) Drug testing in oral fluid. Clin Biochem Rev 27(3):147

    PubMed  PubMed Central  Google Scholar 

  • Eichhorst JC, Etter ML, Rousseaux N, Lehotay DC (2009) Drugs of abuse testing by tandem mass spectrometry: a rapid, simple method to replace immunoassays. Clin Biochem 42(15):1531–1542

    Article  CAS  PubMed  Google Scholar 

  • EMCDDA (2016) Information on the high-risk drug use (HRDU) (formerly ‘problem drug use’ (PDU)) key indicator. emcdda.europa.eu. Accessed 27 September 2016

  • Fucci N, De Giovanni N, De Giorgio F, Liddi R, Chiarotti M (2006) An evaluation of the Cozart® RapiScan system as an on-site screening tool for drugs of abuse in a non-conventional biological matrix: vitreous humor. Forensic Sci Int 156(2-3):102–105

    Article  CAS  PubMed  Google Scholar 

  • Garg U, Ferguson AM (2012) Alternate specimens for drugs-of-abuse testing: preanalytical and interpretative considerations. In: Barbarajean M, Bissell MG, Kwong TC, Wu AHB (eds) Clinical toxicology testing: a guide for laboratory professionals. CAP Press, Durham, pp 71–80

    Google Scholar 

  • Garside D (2008) Drugs-of-abuse in nails. In: Drug testing in alternate biological specimens. Humana Press, New York, pp 43–65

    Chapter  Google Scholar 

  • Gjerde H, Verstraete A (2010) Can the prevalence of high blood drug concentrations in a population be estimated by analyzing oral fluid? A study of tetrahydrocannabinol and amphetamine. Forensic Sci Int 195(1-3):153–159

    Article  CAS  PubMed  Google Scholar 

  • Gjerde H, Verstraete AG (2011) Estimating equivalent cut-off thresholds for drugs in blood and oral fluid using prevalence regression: a study of tetrahydrocannabinol and amphetamine. Forensic Sci Int 212(1-3):e26–e30

    Article  CAS  PubMed  Google Scholar 

  • Goggin MM, Janis GC (2019) Salt-assisted liquid-liquid extraction of meconium for analysis of cocaine and amphetamines by liquid chromatography-tandem mass spectrometry. In: LC-MS in drug analysis. Humana Press, New York

    Google Scholar 

  • Guthrie R, Susi A (1963) A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 32(3):338–343

    Article  CAS  PubMed  Google Scholar 

  • Hadland SE, Levy S (2016) Objective testing: urine and other drug tests. Child Adolesc Psychiatr Clin 25(3):549–565

    Article  Google Scholar 

  • Hancock JR, D’Agostino PA, Chenier CL (2005) Presented at the 3rd conference on mass spectrometry applied to chemical and biological warfare agents, Noordwijkerhout, The Netherlands, 17–20 April 2005

    Google Scholar 

  • Holmgren P, Druid H, Holmgren A, Ahlner J (2004) Stability of drugs in stored postmortem femoral blood and vitreous humor. J For Sci 49(4):1–6

    Google Scholar 

  • Jaffee WB, Trucco E, Levy S, Weiss RD (2007) Is this urine really negative? A systematic review of tampering methods in urine drug screening and testing. J Subst Abus Treat 33(1):33–42

    Article  Google Scholar 

  • Janda I, Weinmann W, Kuehnle T, Lahode M, Alt A (2002) Determination of ethyl glucuronide in human hair by SPE and LC–MS/MS. Forensic Sci Int 128(1-2):59–65

    Article  CAS  PubMed  Google Scholar 

  • Jang M, Kim J, Han I, Yang W (2015) Simultaneous determination of LSD and 2-oxo-3-hydroxy LSD in hair and urine by LC–MS/MS and its application to forensic cases. J Pharm Biomed Anal 115:138–143

    Article  CAS  PubMed  Google Scholar 

  • Jantos R, Veldstra JL, Mattern R, Brookhuis KA, Skopp G (2011) Analysis of 3,4-methylenedioxymetamphetamine: whole blood versus dried blood spots. J Anal Toxicol 35(5):269–273

    Article  CAS  PubMed  Google Scholar 

  • Jeanville PM, Woods JH, Baird TJ III, Estapé ES (2000) Direct determination of ecgonine methyl ester and cocaine in rat plasma, utilizing online sample extraction coupled with rapid chromatography/quadrupole orthogonal acceleration time-of-flight detection. J Pharm Biomed Anal 23(5):897–907

    Article  CAS  PubMed  Google Scholar 

  • Jensen TL, Wu F, McMillin GA (2019) Detection of in utero exposure to Cannabis in paired umbilical cord tissue and meconium by liquid chromatography-tandem mass spectrometry. Clin Mass Spectrometry 14:115–123

    Article  Google Scholar 

  • Katagi M, Nishikawa M, Tatsuno M, Miyazawa T, Tsuchihashi H, Suzuki A, Shirota O (1998) Direct analysis of methamphetamine and amphatamine enantiomers in human urine by semi-microcolumn HPLC: electrospray ionization mass spectrometry. Eisei Kagaku 44(2):107–115

    Article  CAS  Google Scholar 

  • Katagi M, Tatsuno M, Miki A, Nishikawa M, Tsuchihashi H (2000) Discrimination of dimethylamphetamine and methamphetamine use: simultaneous determination of dimethylamphetamine-N-oxide and other metabolites in urine by high-performance liquid chromatography-electrospray ionization mass spectrometry. J Anal Toxicol 24(5):354–358

    Article  CAS  PubMed  Google Scholar 

  • Katagi M, Nishikawa M, Tatsuno M, Miki A, Tsuchihashi H (2001) Column-switching high-performance liquid chromatography–electrospray ionization mass spectrometry for identification of heroin metabolites in human urine. J Chromatogr B Biomed Sci Appl 751(1):177–185

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Wahid A, Anoop KV (2012) Physiology and anatomy of hair in drug abusing cases. IJMTFM 2:153–159

    Google Scholar 

  • Lua IA, Lin SL, Lin HR, Lua AC (2012) Replacing immunoassays for mephedrone, ketamines and six amphetamine-type stimulants with flow injection analysis tandem mass spectrometry. J Anal Toxicol 36(8):575–581

    Article  CAS  PubMed  Google Scholar 

  • Moeller KE, Lee KC, Kissack JC (2008) Urine drug screening: practical guide for clinicians. In: Mayo clinic proceedings, vol 83. Elsevier, Amsterdam, pp 66–76

    Google Scholar 

  • Musshoff F, Madea B (2007) Analytical pitfalls in hair testing. Anal Bioanal Chem 388(7):1475–1494

    Article  CAS  PubMed  Google Scholar 

  • Musshoff F, Kirschbaum KM, Graumann K, Herzfeld C, Sachs H, Madea B (2012) Evaluation of two immunoassay procedures for drug testing in hair samples. Forensic Sci Int 215(1-3):60–63

    Article  CAS  PubMed  Google Scholar 

  • National Center on Substance Abuse and Child Welfare/Substance Abuse and Mental Health Services Administration (2015) Drug testing practice guidelines. Available https://ncsacw.samhsa.gov/files/IA_Drug_Testing_Bench_Card_508.pdf

  • Nishikawa M, Nakajima K, Tatsuno M, Kasuya F, Igarashi K, Fukui M, Tsuchihashi H (1994) The analysis of cocaine and its metabolites by liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry (LC/APCI-MS). Forensic Sci Int 66(3):149–158

    Article  CAS  PubMed  Google Scholar 

  • Patel KN, Patel JK, Patel MP, Rajput GC, Patel HA (2010) Introduction to hyphenated techniques and their applications in pharmacy. Pharm Methods 1(1):2–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul LD, Musshoff F, Aebi B, Auwärter V, Krämer T, Peters F, Schmitt G (2009) Richtlinie der GTFCh zur Qualitätssicherung bei forensisch-toxikologischen Untersuchungen. Toxichem Krimtech 76(3):142–176

    Google Scholar 

  • Pelander A, Ristimaa J, Ojanperä I (2010) Vitreous humor as an alternative matrix for comprehensive drug screening in postmortem toxicology by liquid chromatography-time-of-flight mass spectrometry. J Anal Toxicol 34(6):312–318

    Article  CAS  PubMed  Google Scholar 

  • Peters FT, Schaefer S, Staack RF, Kraemer T, Maurer HH (2003) Screening for and validated quantification of amphetamines and of amphetamine-and piperazine-derived designer drugs in human blood plasma by gas chromatography/mass spectrometry. J Mass Spectrom 38(6):659–676

    Article  CAS  PubMed  Google Scholar 

  • Pujol ML, Cirimele V, Tritsch PJ, Villain M, Kintz P (2007) Evaluation of the IDS One-Stepâ„¢ ELISA kits for the detection of illicit drugs in hair. Forensic Sci Int 170(2-3):189–192

    Article  CAS  PubMed  Google Scholar 

  • Quest Diagnostics (n.d.) Common drugs of abuse. https://www.questdiagnostics.com/home/companies/employer/drug-screening/drugs-tested/

  • Rapinoja M-L, Kuitunen M-L, Bjork H, Rosendahl K, Vanninen P (2005) Presented at the 3rd conference on mass spectrometry applied to chemical and biological warfare agents, Noordwijkerhout, The Netherlands, 17–20 April 2005

    Google Scholar 

  • Ristimaa J, Gergov M, Pelander A, Halmesmäki E, Ojanperä I (2010) Broad-spectrum drug screening of meconium by liquid chromatography with tandem mass spectrometry and time-of-flight mass spectrometry. Anal Bioanal Chem 398(2):925–935

    Article  CAS  PubMed  Google Scholar 

  • SAMHSA (2020) Retrieved 24 June 2020. https://www.samhsa.gov/sites/default/files/workplace/2010GuidelinesAnalytesCutoffs.pdf

  • Saussereau E, Lacroix C, Gaulier JM, Goulle JP (2012) Online liquid chromatography/tandem mass spectrometry simultaneous determination of opiates, cocainics and amphetamines in dried blood spots. J Chromatogr B 885:1–7

    Article  Google Scholar 

  • Schänzle G, Li S, Mikus G, Hofmann U (1999) Rapid, highly sensitive method for the determination of morphine and its metabolites in body fluids by liquid chromatography–mass spectrometry. J Chromatogr B Biomed Sci Appl 721(1):55–65

    Article  PubMed  Google Scholar 

  • Schubert W, Mattern R (2009) Urteilsbildung in der medizinisch-psychologischen Fahreignungsdiagnostik–Beurteilungskriterien. Kirschbaum, Bonn

    Google Scholar 

  • Segura J, Ventura R, Jurado C (1998) Derivatization procedures for gas chromatographic–mass spectrometric determination of xenobiotics in biological samples, with special attention to drugs of abuse and doping agents. J Chromatogr B Biomed Sci Appl 713(1):61–90

    Article  CAS  PubMed  Google Scholar 

  • United Nations (2012) World drug report 2012 (PDF). Retrieved 27 September 2016.

    Google Scholar 

  • Vindenes V, Yttredal B, Øiestad EL, Waal H, Bernard JP, Mørland JG, Christophersen AS (2011) Oral fluid is a viable alternative for monitoring drug abuse: detection of drugs in oral fluid by liquid chromatography-tandem mass spectrometry and comparison to the results from urine samples from patients treated with methadone or buprenorphine. J Anal Toxicol 35(1):32–39

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Naghavi M, Allen C, Barber RM, Bhutta ZA, Carter A, Coggeshall M (2016) Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1459–1544

    Article  Google Scholar 

  • Welch MJ, Sniegoski LT, Tai S (2003) Two new standard reference materials for the determination of drugs of abuse in human hair. Anal Bioanal Chem 376(8):1205–1211

    Article  CAS  PubMed  Google Scholar 

  • Wille SM, Raes E, Lillsunde P, Gunnar T, Laloup M, Samyn N, Verstraete AG (2009) Relationship between oral fluid and blood concentrations of drugs of abuse in drivers suspected of driving under the influence of drugs. Ther Drug Monit 31(4):511–519

    Article  CAS  PubMed  Google Scholar 

  • Wilson ID, Brinkman UT (2003) Hyphenation and hypernation: the practice and prospects of multiple hyphenation. J Chromatogr A 1000(1-2):325–356

    Article  CAS  PubMed  Google Scholar 

  • Wohlfarth A, Weinmann W, Dresen S (2010) LC-MS/MS screening method for designer amphetamines, tryptamines, and piperazines in serum. Anal Bioanal Chem 396(7):2403–2414

    Article  CAS  PubMed  Google Scholar 

  • Wood M, Laloup M, Samyn N, Fernandez MDMR, de Bruijn EA, Maes RA, De Boeck G (2006) Recent applications of liquid chromatography–mass spectrometry in forensic science. J Chromatogr A 1130(1):3–15

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2004) Substitution maintenance therapy in the management of opioid dependence and HIV/AIDS prevention: WHO/UNODC/UNAIDS position paper. WHO, Geneva

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachil Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S. (2023). Drugs of Abuse: Trends and Advanced Analytical Methods. In: Shrivastava, P., Lorente, J.A., Srivastava, A., Badiye, A., Kapoor, N. (eds) Textbook of Forensic Science . Springer, Singapore. https://doi.org/10.1007/978-981-99-1377-0_24

Download citation

Publish with us

Policies and ethics