Skip to main content

Synthesis of Silver and Copper Nanowires and Their Application for Transparent Conductors

  • Chapter
  • First Online:
Synthesis and Applications of Nanomaterials and Nanocomposites

Part of the book series: Composites Science and Technology ((CST))

  • 336 Accesses

Abstract

Silver and copper nanowires have been used in many areas, like sensors, catalysis, optoelectronics, etc. They are well-known by the excellent optoelectronic and chemical properties. Here in this chapter, some interesting aspects of these metal nanowires are reviewed, including: (i) the synthesis methods of the metal nanowires; (ii) application of these nanowires in transparent conductors; (iii) application of the transparent conductors in flexible optoelectronic devices, like solar cells, OLEDs, touch screens, transparent heaters, and so on. Besides the applications, this chapter also sheds light to some fundamental problems, including the coarsening dynamics of nanowires, corrosion and protection of nanowires, and also the conducting mechanism of the transparent conductors basing on nanowires. Finally, perspective is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang R, Engholm M, Hummelgård M, Andersson H, Örtegren J, Olin H, Appl ACS (2018) Energ Mater 1:7191

    CAS  Google Scholar 

  2. Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ (2003) Adv Mater 15:353

    Article  CAS  Google Scholar 

  3. Scardaci V (2021) Appl Sci 11:8035

    Article  CAS  Google Scholar 

  4. Hu LB, Wu H, Cui Y (2011) MRS Bull 36:760

    Article  Google Scholar 

  5. Tan DC, Jiang CM, Li QK, Bi S, Song JH (2020) J Mater Sci Mater Electron 31:15669

    Article  CAS  Google Scholar 

  6. Yao S, Zhu Y (2015) Adv Mater 27:1480

    Article  CAS  Google Scholar 

  7. Xu X, Han G, Yu H, Jin X, Yang J, Lin J, Ma C (2019) J Phys D Appl Phys 53:05LT02

    Google Scholar 

  8. Angmo D, Krebs FC (2013) J Appl Polym Sci 129:1

    Article  CAS  Google Scholar 

  9. Moreira IP, Sanivada UK, Bessa J, Cunha F, Fangueiro R (2021) Molecules 26:3685

    Article  Google Scholar 

  10. Papanastasiou DT, Schultheiss A, Munoz-Rojas D, Celle C, Carella A, Simonato JP, Bellet D (2020) Adv Funct Mater 30:1910225

    Article  CAS  Google Scholar 

  11. Li Y, Cui F, Ross MB, Kim D, Sun Y, Yang P (2017) Nano Lett 17:1312

    Article  CAS  Google Scholar 

  12. Alia SM, Pivovar BS, Yan Y (2013) J Am Chem Soc 135:13473

    Article  CAS  Google Scholar 

  13. Lyu Z, Xie M, Aldama E, Zhao M, Qiu J, Zhou S, Xia Y, Appl ACS (2019) Nano Mater 2:1533

    CAS  Google Scholar 

  14. Chen ZH, Fang R, Li W, Guan J (2019) Adv Mater 31:1900756

    Article  Google Scholar 

  15. Feng Y, Zhu J (2019) Sci China-Mater 62:1679

    Article  CAS  Google Scholar 

  16. Gong S, Yap LW, Zhu B, Cheng W (2020) Adv Mater 32:1902278

    Article  CAS  Google Scholar 

  17. Fievet F, Lagier JP, Figlarz M (1989) MRS Bull 14:29

    Article  CAS  Google Scholar 

  18. Silvert PY, Tekaia-Elhsissen K (1995) Solid State Ionics 82:53

    Article  CAS  Google Scholar 

  19. Silvert P-Y, Herrera-Urbina R, Tekaia-Elhsissen K (1997) J Mater Chem 7:293

    Article  CAS  Google Scholar 

  20. Fievet F, Lagier JP, Blin B, Beaudoin B, Figlarz M, Ionics SS (1989) 32–33. Part 1:198

    Google Scholar 

  21. Zhang QM, Li Y, Xu DS, Gu ZN (2001) J Mater Sci Lett 20:925

    Article  CAS  Google Scholar 

  22. Sloan J, Wright DM, Bailey S, Brown G, York APE, Coleman KS, Green MLH, Hutchison JL, Woo H-G (1999) Chem Comm 699

    Google Scholar 

  23. Govindaraj A, Satishkumar BC, Nath M, Rao CNR (2000) Chem Mater 12:202

    Article  CAS  Google Scholar 

  24. Braun E, Eichen Y, Sivan U, Ben-Yoseph G (1998) Nature 391:775

    Article  CAS  Google Scholar 

  25. Sun Y, Yin Y, Mayers BT, Herricks T, Xia Y (2002) Chem Mater 14:4736

    Article  CAS  Google Scholar 

  26. Sun Y, Xia Y (2002) Adv Mater 14:833

    Article  CAS  Google Scholar 

  27. Sun Y, Gates B, Mayers B, Xia Y (2002) Nano Lett 2:165

    Article  CAS  Google Scholar 

  28. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Angew Chem Int Edit 48:60

    Article  CAS  Google Scholar 

  29. Zheng Y, Zeng J, Ruditskiy A, Liu M, Xia Y (2014) Chem Mater 26:22

    Article  CAS  Google Scholar 

  30. Liu Q, Tian B, Liang J, Wu W (2021) Mater Horiz 8:1634

    Article  CAS  Google Scholar 

  31. Patil JJ, Chae WH, Trebach A, Carter KJ, Lee E, Sannicolo T, Grossman JC (2021) Adv Mater 33:2004356

    Article  CAS  Google Scholar 

  32. Lee E-J, Chang M-H, Kim Y-S, Kim J-Y (2013) APL Mater 1:042118

    Article  Google Scholar 

  33. Xu X, He S, Zhou C, Xia X, Xu L, Chen H, Yang B, Yang J (2016) RSC Adv 6:105895

    Article  CAS  Google Scholar 

  34. Yang Z, Qian H, Chen H, Anker JN (2010) J Colloid Interface Sci 352:285

    Article  CAS  Google Scholar 

  35. Hong BH, Bae SC, Lee CW, Jeong S, Kim KS (2001) Science 294:348

    Google Scholar 

  36. Wiley B, Herricks T, Sun YG, Xia YN (2004) Nano Lett 4:1733

    Google Scholar 

  37. Lee JH, Lee P, Lee D, Lee SS, Ko SH (2012) Cryst Growth Des 12:5598

    Google Scholar 

  38. Jiu J, Sugahara T, Nogi M, Suganuma K (2013) J Nanopart Res 15:1588

    Google Scholar 

  39. Gao Y, Jiang P, Liu DF, Yuan HJ, Yan XQ, Zhou ZP, Wang JX, Song L, Liu LF, Zhou WY, Wang G, Wang CY, Xie SS (2003) Chem Phys Lett 380:146

    Google Scholar 

  40. Gao Y, Song L, Jiang P, Liu LF, Yan XQ, Zhou ZP, Liu DF, Wang JX, Yuan HJ, Zhang ZX, Zhao XW, Dou XY, Zhou WY, Wang G, Xie SS, Chen HY, Li JQ (2005) J Cryst Growth 276:606

    Google Scholar 

  41. Sun Y, Mayers B, Herricks T, Xia Y (2003) Nano Lett 3:955

    Google Scholar 

  42. Niu G, Liu F, Yang Y, Fu Y, Wang W (2020) Colloid Surf A Physicochem Eng Asp 607:125490

    Google Scholar 

  43. Yu Y, Cui F, Sun J, Yang P (2016) Nano Lett 16:3078

    Google Scholar 

  44. Wiley B, Sun YG, Mayersa B, Xia YN (2005) Chem Eur J 11:454

    Google Scholar 

  45. Caswell KK, Bender CM, Murphy CJ (2003) Nano Lett 3:667

    Google Scholar 

  46. Gao P-Y, Kunath W, Gleiter H, Weiss K, Phys Z (1989) D-Atoms. Mol Clust 12:119

    Google Scholar 

  47. Hall BD, Flueli M, Monot R, Borel J-P (1991) Phys Rev B 43:3906

    Google Scholar 

  48. Bovin JO, Alfredsson V, Karlsson G, Carlsson A, Blum Z, Terasaki O (1996) Ultramicroscopy 62:277

    Google Scholar 

  49. Szpunar B, Erb Palumbo U, Aust KT, Lewis LJ (1996) Phys Rev B 53:5547

    Google Scholar 

  50. Gryaznov VG, Heydenreich J, Kaprelov AM, Nepijko SA, Romanov AE, Urban J (1999) Cryst Res Technol 34:1091

    Google Scholar 

  51. Zhang W, Liu Y, Cao R, Li Z, Zhang Y, Tang Y, Fan K (2008) J Am Chem Soc 130:15581

    Google Scholar 

  52. Im SH, Lee YT, Wiley B, Xia Y (2005) Angew Chem Int Edit 44:2154

    Google Scholar 

  53. Zhang WJ, Chen P, Gao QS, Zhang YH, Tang Y (2008) Chem Mater 20:1699

    Google Scholar 

  54. Li B, Ye S, Stewart IE, Alvarez S, Wiley BJ (2015) Nano Lett 15:6722

    Google Scholar 

  55. Chen DP, Qiao XL, Qiu XL, Chen JG, Jiang RZ (2010) J Colloid Interface Sci 344:286

    Google Scholar 

  56. Chen D, Zhu G, Zhu X, Qiao X, Chen J (2011) J Mater Sci Mater Electron 22:1788

    Google Scholar 

  57. Foresti ML, Innocenti M, Kobayashi H, Pezzatini G, Guidelli R (1996) J Chem Soc Faraday Trans 92:3747

    Google Scholar 

  58. Molares MET, Höhberger EM, Schaeflein C, Blick RH, Neumann R, Trautmann C (2003) Appl Phys Lett 82:2139

    Google Scholar 

  59. Shi Y, Li H, Chen L, Huang X (2005) Sci Technol Adv Mater 6:761

    Google Scholar 

  60. Zhang DQ, Wang RR, Wen MC, Weng D, Cui X, Sun J, Li HX, Lu YF (2012) J Am Chem Soc 134:14283

    Google Scholar 

  61. Cui F, Yu Y, Dou L, Sun J, Yang Q, Schildknecht C, Schierle-Arndt K, Yang P (2015) Nano Lett 15:7610

    Google Scholar 

  62. Jin M, He G, Zhang H, Zeng J, Xie Z, Xia Y (2011) Angew Chem Int Edit 50:10560

    Google Scholar 

  63. Lee J-Y, Connor ST, Cui Y, Peumans P (2008) Nano Lett 8:689

    Google Scholar 

  64. Garnett EC, Cai W, Cha JJ, Mahmood F, Connor ST, Greyson Christoforo M, Cui Y, McGehee MD, Brongersma ML (2012) Nat Mater 11:241

    Google Scholar 

  65. Lee J, Lee P, Lee H, Lee D, Lee SS, Ko SH (2012) Nanoscale 4:6408

    Google Scholar 

  66. Lu H, Zhang D, Ren X, Liu J, Choy WCH (2014) ACS Nano 8:10980

    Google Scholar 

  67. Lee SJ, Kim Y-H, Kim JK, Baik H, Park JH, Lee J, Nam J, Park JH, Lee T-W, Yi G-R, Cho JH (2014) Nanoscale 6:11828

    Google Scholar 

  68. Xia X, Yang B, Zhang X, Zhou C (2015) Mater Res Express 2:075009

    Google Scholar 

  69. Ge Y, Duan X, Zhang M, Mei L, Hu J, Hu W, Duan X (2018) J Am Chem Soc 140:193

    Google Scholar 

  70. Niu Z, Cui F, Kuttner E, Xie C, Chen H, Sun Y, Dehestani A, Schierle-Arndt K, Yang P (2018) Nano Lett 18:5329

    Google Scholar 

  71. Xu J, Wang K, Li Y, Zhuang T-T, Gao H-L, Liu Y-Y, He C-X, Yu S-H (2020) Sci China-Chem 63:1046

    Google Scholar 

  72. Hwang H, Kim A, Zhong Z, Kwon H-C, Jeong S, Moon J (2016) Adv Funct Mater 26:6545

    Google Scholar 

  73. Zhong Z, Woo K, Kim I, Hwang H, Kwon S, Choi Y-M, Lee Y, Lee T-M, Kim K, Moon J (2016) Nanoscale 8:8995

    Google Scholar 

  74. Huang S, Liu Y, Jafari M, Siaj M, Wang H, Xiao S, Ma D (2021) Adv Funct Mater 31:2010022

    Google Scholar 

  75. Niu Z, Cui F, Yu Y, Becknell N, Sun Y, Khanarian G, Kim D, Dou L, Dehestani A, Schierle-Arndt K, Yang P (2017) J Am Chem Soc 139:7348

    Google Scholar 

  76. Deshmukh R, Calvo M, Schreck M, Tervoort E, Sologubenko AS, Niederberger M (2018) Acs Appl Mater Interfaces 10:20748

    Google Scholar 

  77. Wang J, Chen H, Zhao Y, Zhong Z, Tang Y, Liu G, Feng X, Xu F, Chen X, Cai D, Kang J (2020) Acs Appl Mater Interfaces 12:35211

    Google Scholar 

  78. Zhang Y, Guo J, Xu D, Sun Y, Yan F (2018) Nano Res 11:3899

    Google Scholar 

  79. Zhang Y, Guo J, Xu D, Sun Y, Yan F (2018) Langmuir 34:3884

    Google Scholar 

  80. Xiang H, Guo T, Xu M, Lu H, Liu S, Yu G, Appl ACS (2018) Nano Mater 1:3754

    Google Scholar 

  81. Song T-B, Chen Y, Chung C-H, Yang Y, Bob B, Duan H-S, Li G, Tu K-N, Huang Y (2014) ACS Nano 8:2804

    Google Scholar 

  82. Selzer F, Floresca C, Kneppe D, Bormann L, Sachse C, Weiß N, Eychmüller A, Amassian A, Müller- L, Leo K (2016) Appl Phys Lett 108:163302

    Google Scholar 

  83. Dai S, Li Q, Liu G, Yang H, Yang Y, Zhao D, Wang W, Qiu M (2016) Appl Phys Lett 108

    Google Scholar 

  84. Song C-H, Ok K-H, Lee C-J, Kim Y, Kwak M-G, Han CJ, Kim N, Ju B-K, Kim J-W (2015) Org Electron 17:208

    Google Scholar 

  85. Jiu J, Sugahara T, Nogi M, Araki T, Suganuma K, Uchida H, Shinozaki K (2013) Nanoscale 5:11820

    Google Scholar 

  86. Sanders DE, DePristo AE (1992) Surf Sci 260:116

    Google Scholar 

  87. Khaligh HH, Goldthorpe IA (2013) Nanoscale Res Lett 8:235

    Google Scholar 

  88. Li Y, Tsuchiya K, Tohmyoh H, Saka M (2013) Nanoscale Res Lett 8:370

    Google Scholar 

  89. Khaligh HH, Xu L, Khosropour A, Madeira A, Romano M, Pradere C, Treguer M, Servant L, Pope MA, Goldthorpe IA (2017) Nanotechnology 28:425703

    Google Scholar 

  90. Yu H, Jin N, Wang Z, Lin J, Wei J, Luo Q, Ma CQ (2020) Nanotechnology 31:18LT01

    Google Scholar 

  91. Hauger TC, Al SMI, Buriak JM (2013) Acs Appl Mater Interfaces 5:12663

    Google Scholar 

  92. Rizza G, Attouchi F, Coulon P-E, Perruchas S, Gacoin T, Monnet I, Largeau L (2011) Nanotechnology 22:175305

    Google Scholar 

  93. Naik JP, Das K, Prewett PD, Raychaudhuri AK, Chen Y (2012) Appl Phys Lett 101:163108

    Google Scholar 

  94. Lee K, Park J, Kim H, Park HS, Song HK, Kim KH, Seo K (2018) J Mater Chem A 6:11790

    Google Scholar 

  95. An S, Jo HS, Kim D-Y, Lee HJ, Ju B-K, Al-Deyab SS, Ahn J-H, Qin Y, Swihart MT, Yarin AL, Yoon SS (2016) Adv Mater 28:7149

    Google Scholar 

  96. Kang H, Choi S-R, Kim Y-H, Kim JS, Kim S, An B-S, Yang C-W, Myoung J-M, Lee T-W, Kim J-G, Cho JH (2020) Acs Appl Mater Interfaces 12:39479

    Google Scholar 

  97. Wang S, Tian Y, Hang C, Wang C (2018) Sci Rep 8:5260

    Google Scholar 

  98. Wang S, Tian Y, Wang C, Hang C (2018) J Electrochem Soc 165:D328

    Google Scholar 

  99. Zhang L, Chen Y, Xu C, Liu Z, Qiu Y (2018) RSC Adv 8:14532

    Google Scholar 

  100. Dou L, Cui F, Yu Y, Khanarian G, Eaton SW, Yang Q, Resasco J, Schildknecht C, Schierle-Arndt K, Yang P (2016) ACS Nano 10:2600

    Google Scholar 

  101. Hu L, Kim HS, Lee J-Y, Peumans P, Cui Y (2010) ACS Nano 4:2955

    Google Scholar 

  102. De S, Higgins TM, Lyons PE, Doherty EM, Nirmalraj PN, Blau WJ, Boland JJ, Coleman JN (2009) ACS Nano 3:1767

    Google Scholar 

  103. Zeng Z, Wang C, Gao J (2020) J Appl Phys 127:065104

    Google Scholar 

  104. Behnam A, Guo J, Ural A (2007) J Appl Phys 102:044313

    Google Scholar 

  105. Balberg I, Binenbaum N, Anderson CH (1983) Phys Rev Lett 51:1605

    Google Scholar 

  106. Li J, Zhang S-L (2010) Phys Rev E 81:021120

    Google Scholar 

  107. Zezelj M, Stankovic I (2012) Phys Rev B 86:134202

    Google Scholar 

  108. Pike GE, Seager CH (1974) Phys Rev B 10:1421

    Google Scholar 

  109. Bauhofer W, Kovacs JZ (2009) Compos Sci Technol 69:1486

    Google Scholar 

  110. Kirkpatrick S (1973) Rev Mod Phys 45:574

    Google Scholar 

  111. O’Callaghan C, da Rocha CG, Manning HG, Boland JJ, Ferreira MS (2016) Phys Chem Chem Phys 18:27564

    Google Scholar 

  112. Kumar A, Vidhyadhiraja NS, Kulkarni GU (2017) J Appl Phys 122:045101

    Google Scholar 

  113. Li L, Holland S (2014) Nanomater Energy 3:139

    Google Scholar 

  114. Wu Z, López E, Buldyrev SV, Braunstein LA, Havlin S, Stanley HE (2005) Phys Rev E 71:045101

    Google Scholar 

  115. Rossen WR, Mamun CK (1993) Phys Rev B 47:11815

    Google Scholar 

  116. He S, Xu X, Qiu X, He Y, Zhou C (2018) J Appl Phys 124:054302

    Google Scholar 

  117. Ponzoni A (2019) Appl Phys Lett 114:153105

    Google Scholar 

  118. Tarasevich YY, Vodolazskaya IV, Eserkepov AV, Akhunzhanov RK (2019) J Appl Phys 125:134902

    Google Scholar 

  119. Balberg I (2020) J Appl Phys 128:204304

    Google Scholar 

  120. Zeng J, Wang Y, Zheng X, Zhou C (2022) J Phys D Appl Phys 55:414004

    Google Scholar 

  121. Zhu R, Chung C-H, Cha KC, Yang W, Zheng YB, Zhou H, Song T-B, Chen C-C, Weiss PS, Li G, Yang Y (2011) ACS Nano 5:9877

    Google Scholar 

  122. Sachse C, Weiß N, Gaponik N, Müller L, Eychmüller A, Leo K (2014) Adv Energy Mater 4:1300737

    Google Scholar 

  123. Kim Y, Ryu TI, Ok K-H, Kwak M-G, Park S, Park N-G, Han CJ, Kim BS, Ko MJ, Son HJ, Kim J-W (2015) Adv Funct Mater 25:4580

    Google Scholar 

  124. Liu X, Yang X, Liu X, Zhao Y, Chen J, Gu Y (2018) Appl Phys Lett 113:203903

    Google Scholar 

  125. Kang S, Jeong J, Cho S, Yoon YJ, Park S, Lim S, Kim JY, Ko H (2019) J Mater Chem A 7:1107

    Google Scholar 

  126. Zhou J, Li S, Lv X, Li X, Li Y, Zheng Y-Z, Tao X (2020) J Power Source 478:228764

    Google Scholar 

  127. Yang H, Kwon H-C, Ma S, Kim K, Yun S-C, Jang G, Park J, Lee H, Goh S, Moon J (2020) Acs Appl Mater Interfaces 12:13824

    Google Scholar 

  128. Liu H, Wu J, Fu Y, Wang B, Yang Q, Sharma GD, Keshtov ML, Xie Z (2021) Thin Solid Films 718:138486

    Google Scholar 

  129. Gao B, Meng J (2021) Sol Energy 230:598

    Google Scholar 

  130. Qin F, Sun LL, Chen HT, Liu Y, Lu X, Wang W, Liu TF, Dong XY, Jiang P, Jiang YY, Wang L, Zhou YH (2021) Adv Mater 33:2103017

    Google Scholar 

  131. Wang J, Chen X, Jiang F, Luo Q, Zhang L, Tan M, Xie M, Li Y-Q, Zhou Y, Su W, Li Y, Ma C-Q (2018) Solar RRL 2:1800118

    Google Scholar 

  132. Gao B, Meng J (2021) Acta Phys Sin 70:208801

    Google Scholar 

  133. Chen C-C, Dou L, Zhu R, Chung C-H, Song T-B, Zheng YB, Hawks S, Li G, Weiss PS, Yang Y (2012) ACS Nano 6:7185

    Google Scholar 

  134. Guo F, Kubis P, Przybilla T, Spiecker E, Hollmann A, Langner S, Forberich K, Brabec CJ (2015) Adv Energy Mater 5:1401779

    Google Scholar 

  135. Han K, Xie M, Zhang L, Yan L, Wei J, Ji G, Luo Q, Lin J, Hao Y, Ma C-Q (2018) Sol Energ Mat Sol C 185:399

    Google Scholar 

  136. Sun YN, Chang MJ, Meng LX, Wan XJ, Gao HH, Zhang YM, Zhao K, Sun ZH, Li CX, Liu SR, Wang HK, Liang JJ, Chen YS (2019) Nat Electron 2:513

    Google Scholar 

  137. Li WT, Zhang H, Shi SW, Xu JX, Qin X, He QQ, Yang KC, Dai WB, Liu G, Zhou QG, Yu HZ, Silva SRP, Fahlman M (2020) J Mater Chem C 8:4636

    Google Scholar 

  138. Ma C, Liu YF, Bi YG, Zhang XL, Yin D, Feng J, Sun HB (2021) Nanoscale 13:12423

    Google Scholar 

  139. Li D, Lai W-Y, Zhang Y-Z, Huang W (2018) Adv Mater 30:1704738

    Google Scholar 

  140. Lee H, Lee D, Ahn Y, Lee E-W, Park LS, Lee Y (2014) Nanoscale 6:8565

    Google Scholar 

  141. Cho S, Kang S, Pandya A, Shanker R, Khan Z, Lee Y, Park J, Craig SL, Ko H (2017) ACS Nano 11:4346

    Google Scholar 

  142. Kim BS, Won S, Seo J, Jeong SK, Kim C, Kim K-S, Kim SH, Cho SM, Kim J-H (2021) ACS Appl Mater Inter 13:26601

    Google Scholar 

  143. Kim T, Kang S, Heo J, Cho S, Kim JW, Choe A, Walker B, Shanker R, Ko H, Kim JY (2018) Adv Mater 30:1800659

    Google Scholar 

  144. Kim T, Kim YW, Lee HS, Kim H, Yang WS, Suh KS (2013) Adv Funct Mater 23:1250

    Google Scholar 

Download references

Acknowledgements

C. Zhou thanks the financial support of National Scientific Foundation of China (NSFC, No. 61774170) and the Natural Science Foundation of Hunan Province (NO. 2020JJ4759). Y. Gao thanks support from National Science Foundation, United States (NSF, DMR-1903962).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conghua Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, C., Gao, Y. (2023). Synthesis of Silver and Copper Nanowires and Their Application for Transparent Conductors. In: Uddin, I., Ahmad, I. (eds) Synthesis and Applications of Nanomaterials and Nanocomposites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-99-1350-3_9

Download citation

Publish with us

Policies and ethics