Skip to main content

Structure and Stability of Modern Electrolytes in Nanoscale Confinements from Molecular Dynamics Perspective

  • Chapter
  • First Online:
Synthesis and Applications of Nanomaterials and Nanocomposites

Part of the book series: Composites Science and Technology ((CST))

Abstract

Recent studies show that ionic liquids and high concentration salt solutions are promising alternatives to conventional electrolytes for high-performance batteries. The intercalation of electrolytes in nanoscale electrode confinements is a vital phenomenon governing the performance of batteries. A fundamental understanding of the electrolyte structure and stability inside electrode confinements helps explore the full potential of modern electrolytes for electrochemical devices. Factors such as the confinement shape, size, and flexibility govern the stability of electrolytes in nanoscale confinements. Enhanced molecular dynamics simulation can help delineate the free energy underlying the process of electrolyte evaporation or deintercalation from confinements. However, such studies in this direction are limited to few electrolytes only. This chapter highlights recent computational studies carried out in our group exploring the stability and structure of ionic liquids and water-in-salt electrolytes in nanoscale confinements, and provides a plausible mechanism for their intercalation and deintercalation behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winter M, Barnett B, Xu K (2018) Before li ion batteries. Chem Rev 118:11433–11456

    Article  CAS  Google Scholar 

  2. Kim T, Song W, Son D-Y, Ono LK, Qi Y (2019) Lithium-ion batteries: outlook on present, future, and hybridized technologies. J Mater Chem A 7:2942–2964

    Article  CAS  Google Scholar 

  3. Goodenough JB, Park K-S (2013) The li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176

    Article  CAS  Google Scholar 

  4. Goodenough JB, Kim Y (2010) Challenges for rechargeable li batteries. Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  5. Peled E, Menkin S (2017) Review-sei: past, present and future. J Electrochem Soc 164:A1703

    Google Scholar 

  6. Armand M, Tarascon J-M (2008) Building better batteries. Nature 451:652–657

    Article  CAS  Google Scholar 

  7. Watanabe M, Thomas ML, Zhang S, Ueno K, Yasuda T, Dokko K (2017) Application of ionic liquids to energy storage and conversion materials and devices. Chem Rev 117:7190–7239

    Article  CAS  Google Scholar 

  8. Matsumoto H (2014) Review: ionic liquids as a potential electrolyte for energy devices. In: 2014 IEEE International Nanoelectronics Conference (INEC), pp 1–4

    Google Scholar 

  9. Suo L, Borodin O, Gao T, Olguin M, Ho J, Fan X, Luo C, Wang C, Xu K (2015) “water-in-salt’’ electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350:938

    Article  CAS  Google Scholar 

  10. Welton T (1999) Room-temperature ionic liquids solvents for synthesis and catalysis. Chem Rev 99:2071–2084

    Article  CAS  Google Scholar 

  11. Lei Z, Chen B, Koo Y-M, MacFarlane DR (2017) Introduction: ionic liquids. Chem Rev 117(10):6633–6635

    Article  Google Scholar 

  12. Seddon KR (2003) A taste of the future. Nat Mater 2:363

    Article  CAS  Google Scholar 

  13. Davis JH Jr (2004) Task-specific ionic liquids. Chem Lett 33:1072–1077

    Article  CAS  Google Scholar 

  14. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845

    Article  CAS  Google Scholar 

  15. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621

    Article  CAS  Google Scholar 

  16. Lu W, Fadeev AG, Qi B, Smela E, Mattes BR, Ding J, Spinks GM, Mazurkiewicz J, Zhou D, Wallace GG, MacFarlane DR, Forsyth SA, Forsyth M (2002) Use of ionic liquids for pi-conjugated polymer electrochemical devices. Science 297:983

    Article  CAS  Google Scholar 

  17. MacFarlane DR, Forsyth M, Howlett PC, Pringle JM, Sun J, Annat G, Neil W, Izgorodina EI (2007) Ionic liquids in electrochemical devices and processes: managing interfacial electrochemistry. Acc Chem Res 40:1165–1173

    Article  CAS  Google Scholar 

  18. Smiglak M, Metlen A, Rogers RD (2007) The second evolution of ionic liquids: From solvents and separations to advanced materials-energetic examples from the ionic liquid cookbook. Acc Chem Res 40:1182–1192

    Article  CAS  Google Scholar 

  19. Greaves TL, Kennedy DF, Mudie ST, Drummond CJ (2010) Diversity observed in the nanostructure of protic ionic liquids. J Phys Chem B 114:10022–10031

    Article  CAS  Google Scholar 

  20. Zein El Abedin S, Endres F (2007) Ionic liquids: The link to high-temperature molten salts? Acc Chem Res 40:1106–1113

    Article  Google Scholar 

  21. Balducci A, Dugas R, Taberna PL, Simon P, Plée D, Mastragostino M, Passerini S (2007) High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte. J Power Sources 165:922–927

    Article  CAS  Google Scholar 

  22. Kim TY, Lee HW, Stoller M, Dreyer DR, Bielawski CW, Ruoff RS, Suh KS (2011) High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes. ACS Nano 5:436–442

    Article  CAS  Google Scholar 

  23. Lin R, Taberna P-L, Fantini S, Presser V, Pérez CR, Malbosc F, Rupesinghe NL, Teo KBK, Gogotsi Y, Simon P (2011) Capacitive energy storage from \(-\)50 to 100\(^{\circ }\)c using an ionic liquid electrolyte. J Phys Chem Lett 2:2396–2401

    Article  CAS  Google Scholar 

  24. Choi BG, Yang M, Jung SC, Lee KG, Kim J-G, Park H, Park TJ, Lee SB, Han Y-K, Huh YS (2013) Enhanced pseudocapacitance of ionic liquid/cobalt hydroxide nanohybrids. ACS Nano 7:2453–2460

    Article  CAS  Google Scholar 

  25. Brandt A, Pohlmann S, Varzi A, Balducci A, Passerini S (2013) Ionic liquids in supercapacitors. MRS Bull 38:554–559

    Article  CAS  Google Scholar 

  26. Wang H, Xu Z, Kohandehghan A, Li Z, Cui K, Tan X, Stephenson TJ, King’ondu CK, Holt CMB, Olsen BC, Tak JK, Harfield D, Anyia AO, Mitlin D (2013) Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 7:5131–5141

    Google Scholar 

  27. Suo L, Hu Y-S, Li H, Armand M, Chen L (2013) A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nature Commun 4:1481

    Article  Google Scholar 

  28. Wang J, Yamada Y, Sodeyama K, Chiang CH, Tateyama Y, Yamada A (2016) Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nature Commun 7:12032

    Article  CAS  Google Scholar 

  29. Yamada Y, Usui K, Sodeyama K, Ko S, Tateyama Y, Yamada A (2016) Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nat Energy 1:16129

    Article  CAS  Google Scholar 

  30. Yamada Y, Yaegashi M, Abe T, Yamada A (2013) A superconcentrated ether electrolyte for fast-charging li-ion batteries. Chem Commun 49:11194–11196

    Article  CAS  Google Scholar 

  31. Suo L, Borodin O, Sun W, Fan X, Yang C, Wang F, Gao T, Ma Z, Schroeder M, von Cresce A, Russell SM, Armand M, Angell A, Xu K, Wang C (2016) Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt’’ electrolyte. Angew Chem Int Ed 55:7136–7141

    Article  CAS  Google Scholar 

  32. Yamada Y, Yamada A (2015) Review-superconcentrated electrolytes for lithium batteries. J Electrochem Soc 162(14):A2406–A2423

    Article  CAS  Google Scholar 

  33. Yang C, Chen J, Qing T, Fan X, Sun W, von Cresce A, Ding MS, Borodin O, Vatamanu J, Schroeder MA, Eidson N, Wang C, Xu K (2017) 4.0 v aqueous li-ion batteries. Joule 1:122–132

    Article  CAS  Google Scholar 

  34. Kühnel R-S, Reber D, Battaglia C (2020) Perspective-electrochemical stability of water-in-salt electrolytes. J Electrochem Soc 167:070544

    Article  Google Scholar 

  35. Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A (2014) Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J Am Chem Soc 136:5039–5046

    Article  CAS  Google Scholar 

  36. Okuoka S-I, Ogasawara Y, Suga Y, Hibino M, Kudo T, Ono H, Yonehara K, Sumida Y, Yamada Y, Yamada A, Oshima M, Tochigi E, Shibata N, Ikuhara Y, Mizuno N (2014) A new sealed lithium-peroxide battery with a co-doped li2o cathode in a superconcentrated lithium bis(fluorosulfonyl)amide electrolyte. Sci Rep 4:5684

    Article  CAS  Google Scholar 

  37. Dokko K, Watanabe D, Ugata Y, Thomas ML, Tsuzuki S, Shinoda W, Hashimoto K, Ueno K, Umebayashi Y, Watanabe M (2018) Direct evidence for li ion hopping conduction in highly concentrated sulfolane-based liquid electrolytes. J Phys Chem B 122:10736–10745

    Article  CAS  Google Scholar 

  38. Qian J, Henderson WA, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang J-G (2015) High rate and stable cycling of lithium metal anode. Nat Commun 6:6362

    Article  CAS  Google Scholar 

  39. Yang J, Ding Y, Lian C, Ying S, Liu H (2020) Theoretical insights into the structures and capacitive performances of confined ionic liquids. Polymers 12(3):722

    Article  CAS  Google Scholar 

  40. Herrera C, García G, Atilhan M, Aparicio S (2015) Nanowetting of graphene by ionic liquid droplets. J Phys Chem C 119(43):24529–24537

    Article  CAS  Google Scholar 

  41. Burt R, Birkett G, Salanne M, Zhao XS (2016) Molecular dynamics simulations of the influence of drop size and surface potential on the contact angle of ionic-liquid droplets. J Phys Chem C 120(28):15244–15250

    Article  CAS  Google Scholar 

  42. Li H, Sedev R, Ralston J (2011) Dynamic wetting of a fluoropolymer surface by ionic liquids. Phys Chem Chem Phys 13(9):3952–3959

    Article  CAS  Google Scholar 

  43. Taherian F, Leroy F, Heim L-O, Bonaccurso E, van der Vegt NFA (2016) Mechanism for asymmetric nanoscale electrowetting of an ionic liquid on graphene. Langmuir 32(1):140–150

    Article  CAS  Google Scholar 

  44. Malali S, Foroutan M (2017) Study of wetting behavior of bmim+/pf6- ionic liquid on tio2 (110) surface by molecular dynamics simulation. J Phys Chem C 121(21):11226–11233

    Article  CAS  Google Scholar 

  45. Dong D, Vatamanu JP, Wei X, Bedrov D (2018) The 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)-imide ionic liquid nanodroplets on solid surfaces and in electric field: a molecular dynamics simulation study. J Chem Phys 148:193833

    Article  Google Scholar 

  46. Bordes E, Douce L, Quitevis EL, Padua AAH, Costa Gomes M (2018) Ionic liquids at the surface of graphite: wettability and structure. J Chem Phys 148:193840

    Google Scholar 

  47. Liu Z, Cui T, Li G, Endres F (2017) Interfacial nanostructure and asymmetric electrowetting of ionic liquids. Langmuir 33(38):9539–9547

    Article  CAS  Google Scholar 

  48. Dhattarwal HS, Kashyap HK (2019) Molecular dynamics investigation of wetting-dewetting behavior of model carbon material by 1-butyl-3-methylimidazolium acetate ionic liquid nanodroplet. J Chem Phys 151:244705

    Article  Google Scholar 

  49. Wang S, Li S, Cao Z, Yan T (2010) Molecular dynamic simulations of ionic liquids at graphite surface. J Phys Chem C 114:990–995

    Article  CAS  Google Scholar 

  50. Feng G, Jiang X, Qiao R, Kornyshev AA (2014) Water in ionic liquids at electrified interfaces: the anatomy of electrosorption. ACS Nano 8:11685–11694

    Article  CAS  Google Scholar 

  51. Sharma S, Kashyap HK (2015) Structure of quaternary ammonium ionic liquids at interfaces: effects of cation tail modification with isoelectronic groups. J Phys Chem C 119:23955–23967

    Article  CAS  Google Scholar 

  52. Sharma S, Kashyap HK (2017) Interfacial structure of pyrrolidinium cation based ionic liquids at charged carbon electrodes: the role of linear and nonlinear alkyl tails. J Phys Chem C 121:13202–13210

    Article  CAS  Google Scholar 

  53. Sharma S, Dhattarwal HS, Kashyap HK (2019) Molecular dynamics investigation of electrostatic properties of pyrrolidinium cation based ionic liquids near electrified carbon electrodes. J Mol Liq 291:111269

    Article  CAS  Google Scholar 

  54. Gupta A, Dhattarwal HS, Kashyap HK (2021) Structure of cholinium glycinate biocompatible ionic liquid at graphite electrode interface. J Chem Phys 154:184702

    Article  CAS  Google Scholar 

  55. Vatamanu J, Borodin O (2017) Ramifications of water-in-salt interfacial structure at charged electrodes for electrolyte electrochemical stability. J Phys Chem Lett 8:4362–4367

    Article  CAS  Google Scholar 

  56. Li Z, Jeanmairet G, Méndez-Morales T, Rotenberg B, Salanne M (2018) Capacitive performance of water-in-salt electrolytes in supercapacitors: a simulation study. J Phys Chem C 122:23917–23924

    Article  CAS  Google Scholar 

  57. McEldrew M, Goodwin ZAH, Kornyshev AA, Bazant MZ (2018) Theory of the double layer in water-in-salt electrolytes. J Phys Chem Lett 9:5840–5846

    Article  CAS  Google Scholar 

  58. Ye J, Baumgaertel AC, Wang YM, Biener J, Biener MM (2015) Structural optimization of 3d porous electrodes for high-rate performance lithium ion batteries. ACS Nano 9:2194–2202

    Article  CAS  Google Scholar 

  59. Vatamanu J, Vatamanu M, Borodin O, Bedrov D (2016) A comparative study of room temperature ionic liquids and their organic solvent mixtures near charged electrodes. J Phys: Condens Matter 28:464002

    Google Scholar 

  60. Vatamanu J, Bedrov D, Borodin O (2017) On the application of constant electrode potential simulation techniques in atomistic modelling of electric double layers. null 43:838–849

    Google Scholar 

  61. Zhang L, Wang H (2020) Anion intercalation into a graphite electrode from trimethyl phosphate. ACS Appl Mater Interfaces 12:47647–47654

    Article  CAS  Google Scholar 

  62. Huang X, Margulis CJ, Berne BJ (2003) Dewetting-induced collapse of hydrophobic particles. Proc Natl Acad Sci 100:11953

    Article  CAS  Google Scholar 

  63. Xu L, Molinero V (2010) Liquid-vapor oscillations of water nanoconfined between hydrophobic disks: thermodynamics and kinetics. J Phys Chem B 114:7320–7328

    Article  CAS  Google Scholar 

  64. Remsing RC, Xi E, Vembanur S, Sharma S, Debenedetti PG, Garde S, Patel AJ (2015) Pathways to dewetting in hydrophobic confinement. Proc Natl Acad Sci 112(27):8181–8186

    Article  CAS  Google Scholar 

  65. Altabet YE, Haji-Akbari A, Debenedetti PG (2017) Effect of material flexibility on the thermodynamics and kinetics of hydrophobically induced evaporation of water. Proc Natl Acad Sci 114(13):E2548–E2555

    Article  CAS  Google Scholar 

  66. Cerdeiriña CA, Debenedetti PG, Rossky PJ, Giovambattista N (2011) Evaporation length scales of confined water and some common organic liquids. J Phys Chem Lett 2:1000–1003

    Article  Google Scholar 

  67. Davoodabadi A, Ghasemi H (2021) Evaporation in nano/molecular materials. Adv Colloid Interface Sci 290:102385

    Article  CAS  Google Scholar 

  68. Massé RC, Liu C, Li Y, Mai L, Cao G (2017) Energy storage through intercalation reactions: electrodes for rechargeable batteries. Natl Sci Rev 4:26–53

    Article  Google Scholar 

  69. Zhu D, Fan H, Wang H (2021) Pf6- intercalation into graphite electrode from propylene carbonate. ACS Appl Energy Mater 4:2181–2189

    Article  CAS  Google Scholar 

  70. Kondo Y, Miyahara Y, Fukutsuka T, Miyazaki K, Abe T (2019) Electrochemical intercalation of bis(fluorosulfonyl)amide anions into graphite from aqueous solutions. Electrochem Commun 100:26–29

    Article  CAS  Google Scholar 

  71. Xia J, Wang J, Chao D, Chen Z, Liu Z, Kuo J-L, Yan J, Shen ZX (2017) Phase evolution of lithium intercalation dynamics in 2h-mos2. Nanoscale 9(22):7533–7540

    Article  CAS  Google Scholar 

  72. Abbas G, Sonia FJ, Zafar ZA, Knížek K, Houdková J, Jiříček P, Bouša M, Plšek J, Kalbáč M, Červenka J, Frank O (2022) Influence of structural properties on (de-)intercalation of clo4-anion in graphite from concentrated aqueous electrolyte. Carbon 186:612–623

    Article  CAS  Google Scholar 

  73. Rothermel S, Meister P, Schmuelling G, Fromm O, Meyer H-W, Nowak S, Winter M, Placke T (2014) Dual-graphite cells based on the reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte. Energy Environ Sci 7(10):3412–3423

    Article  CAS  Google Scholar 

  74. Shrivastav G, Remsing RC, Kashyap HK (2018) Capillary evaporation of the ionic liquid [EMIM][BF4] in nanoscale solvophobic confinement. J Chem Phys 148(19):193810

    Google Scholar 

  75. Dhattarwal HS, Remsing RC, Kashyap HK (2020) How flexibility of the nanoscale solvophobic confining material promotes capillary evaporation of ionic liquids. J Phys Chem C 124:4899–4906

    Article  CAS  Google Scholar 

  76. Dhattarwal HS, Remsing RC, Kashyap HK (2021) Intercalation-deintercalation of water-in-salt electrolytes in nanoscale hydrophobic confinement. Nanoscale 13(7):4195–4205

    Article  CAS  Google Scholar 

  77. Altabet YE, Debenedetti PG (2017) Communication: relationship between local structure and the stability of water in hydrophobic confinement. J Chem Phys 147:241102

    Article  Google Scholar 

  78. Patel AJ, Varilly P, Chandler D (2010) Fluctuations of water near extended hydrophobic and hydrophilic surfaces. J Phys Chem B 114:1632–1637

    Article  CAS  Google Scholar 

  79. Patel AJ, Varilly P, Chandler D, Garde S (2011) Quantifying density fluctuations in volumes of all shapes and sizes using indirect umbrella sampling. J Stat Phys 145:265–275

    Article  Google Scholar 

  80. Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. i. the method. J Comput Chem 13:1011–1021

    Article  CAS  Google Scholar 

  81. Altabet YE, Debenedetti PG (2014) The role of material flexibility on the drying transition of water between hydrophobic objects: a thermodynamic analysis. J Chem Phys 141:18C531

    Article  Google Scholar 

  82. Alibalazadeh M, Foroutan M (2015) Specific distributions of anions and cations of an ionic liquid through confinement between graphene sheets. J Mol Model 21:168

    Article  Google Scholar 

Download references

Acknowledgements

HSD thanks UGC India for fellowship. This work was financially supported by Science and Engineering Research Board (SERB), Department of Science and Technology, India (Grant No. CRG/2022/007119); and Council of Scientific and Industrial Research (CSIR), Ministry of Science and Technology, India (Project No. 01 (3039)/21/EMR-II) awarded to HKK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemant K. Kashyap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhattarwal, H.S., Kashyap, H.K. (2023). Structure and Stability of Modern Electrolytes in Nanoscale Confinements from Molecular Dynamics Perspective. In: Uddin, I., Ahmad, I. (eds) Synthesis and Applications of Nanomaterials and Nanocomposites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-99-1350-3_5

Download citation

Publish with us

Policies and ethics