Skip to main content

Synthesis of Self-stabilized Metal-Oxide and Metal-Hydroxide Nanorods

  • Chapter
  • First Online:
Synthesis and Applications of Nanomaterials and Nanocomposites

Part of the book series: Composites Science and Technology ((CST))

  • 236 Accesses

Abstract

Nanorods (NRs) have been a subject of profound interest because of a wide variation in their electronic properties with confinement. In this article, a single-step, self-stabilizing, two-electrode electrochemical synthesis method is demonstrated for growing metal–oxide and metal-hydroxide NRs at room temperature. Barium hydroxide NRs were fabricated using a simple electrochemical reduction of Ba2+ ions from a barium chloride precursor solution without using any capping agent. The synthesized NRs were characterized using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), Optical Microscopy (OM), Energy Dispersive X-Ray Spectroscopy (EDS), Selected Area Electron Diffraction (SAED), and UV–Vis. absorption spectroscopy. Effects of temperature and potential differences across the electrodes on the shape and size of the synthesized NRs were also investigated. NRs of diameters in the range of 80 to 300 nm were fabricated with different growth parameters. Furthermore, the synthesis of silver oxide NRs at room temperature is also demonstrated with the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arno MC, Inam M, Weems AC, Li Z, Binch ALA, Platt CI, Richardson SM, Hoyland JA, Dove AP, O’Reilly RK (2020) Exploiting the role of nanoparticle shape in enhancing hydrogel adhesive and mechanical properties. Nat Commun 11:1420

    Article  CAS  Google Scholar 

  2. Hua Y, Chandra K, Dam DHM, Wiederrecht GP, Odom TW (2015) Shape-Dependent nonlinear optical properties of anisotropic gold nanoparticles. J Phys Chem Lett 6:4904–4908

    Article  CAS  Google Scholar 

  3. Singh AK, Srivastava ON, Singh K (2017) Shape and Size-Dependent magnetic properties of Fe3O4 nanoparticles synthesized using piperidine. Nanoscale Res Lett 12:298

    Article  Google Scholar 

  4. Essajai R, Benhouria Y, Rachadi A, Qjani M, Mzerda A, Hassanain N (2019) Shape-dependent structural and magnetic properties of Fe nanoparticles studied through simulation methods. RSC Adv 9:22057–22063

    Article  CAS  Google Scholar 

  5. Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897–1899

    Article  CAS  Google Scholar 

  6. Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–246

    Article  CAS  Google Scholar 

  7. Choi MY, Choi D, Jin MJ, Kim I, Kim SH, Choi JY, Lee SY, Kim JM, Kim SW (2009) Mechanically powered transparent flexible charge-generating nano devices with Piezoelectric ZnO Nanorods. Adv Materials 21:2185

    Article  CAS  Google Scholar 

  8. Lee YJ, Ruby DS, Peters DW, McKenzie BB, Hsu JWP (2008) ZnO nanostructures as efficient antireflection layers in solar cells. Nano Lett 8:1501

    Article  CAS  Google Scholar 

  9. Willander M, Nur O, Zhao QX, Yang LL, Lorenz M, Cao BQ, Perez JZ, Czekalla C, Zimmermann G, Grundmann M, Bakin A, Behrends A, Suleiman MA, Shaer AE, Mofor AC, Postels B, Waag A, Boukos N, Travlos A, Kwack HS, Guinard J, Dang DLS (2009) Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers. Nanotechnol 20:332001

    Article  CAS  Google Scholar 

  10. Wang JX, Sun XW, Yang Y, Huang H, Lee YC, Tan OK, Vayssieres L (2006) Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications. Nanotechnol 17:4995

    Article  CAS  Google Scholar 

  11. Jagiello K, Chomicz B, Avramopoulos A, Gajewicz A, Mikolajczyk A, Bonifassi P, Papadopoulos MG, Leszczynski J, Puzyn T (2017) Size-dependent electronic properties of nanomaterials. Struct Chem 28:635–643

    Article  CAS  Google Scholar 

  12. Rodriguez-Sanchez L, Blanco MC, Lopez-Quintela MA (2000) Electrochemical synthesis of silver nanoparticles. J Phys Chem B 104:9683–9688

    Article  CAS  Google Scholar 

  13. Therese GHA, Kamath V (2000) Electrochemical synthesis of metal Oxides and Hydroxides. Chem Mater 12:1195–1204

    Article  CAS  Google Scholar 

  14. Morsy SMI (2014) Role of surfactants in nanotechnology and their applications. Int J Curr Microbiol App Sci 3:237–260

    Google Scholar 

  15. Niu Z, Li Y (2014) Removal and utilization of capping agents in nanocatalysis. Chem Mater 26:72–83

    Article  CAS  Google Scholar 

  16. Burungale VV, Satale VV, Teli AM, Kamble AS, Kim JH, Patil PS (2016) Surfactant free single step synthesis of TiO2 3-D microflowers by hydrothermal route and its photoelectrochemical characterizations. J Alloys Compd 656:491–499

    Article  CAS  Google Scholar 

  17. Jeun YE, Baek B, Lee MW, Ahn HS (2018) Surfactant-free electrochemical synthesis of metallic nanoparticles via stochastic collisions of aqueous nanodroplet reactors. Chem Commun 54:10052–10055

    Article  CAS  Google Scholar 

  18. Sinisterra JV, Fuentes A, Marinas JM (1987) Ba(OH)2 as catalyst in organic reactions. 17. Interfacial solid-liquid wittig-horner reaction under sonochemical conditions, J Org Chem, 52, 3875–3879

    Google Scholar 

  19. Climent MS, Marinas JM, Mouloungui Z, Le Bigot Y, Delmas M, Gaset A, Sinisterra JV (1987) Ba(OH)2 as Catalyst in Organic Reactions. 20. Structure-Catalytic activity relationship in the wittig reaction, J Org Chem, 54, 3695–3701

    Google Scholar 

  20. Zhao W, Ye L, Zhang S, Yao H, Sun M, Hou J (2015) An easily accessible cathode buffer layer for achieving multiple high performance polymer photovoltaic cells. J Phys Chem C 119:27322–27329

    Article  CAS  Google Scholar 

  21. Cui K, Liu L, Sun M (2017) Study on improving the heat storage property of Ba(OH)2·8H2O with paraffin. Mater Res Express 4:125502

    Article  Google Scholar 

  22. Guisbiers G, Mejía-Rosales S, Deepak FL (2012) Nanomaterial properties: Size and shape dependencies. J Nanomater 2012:180976

    Article  Google Scholar 

  23. Giorgi R, Ambrosi M, Toccafondi N, Baglioni P (2010) Nanoparticles for cultural heritage conservation: calcium and barium hydroxide nanoparticles for wall painting consolidation. Chem Eur J 16:9374–9382

    Article  CAS  Google Scholar 

  24. Chelazzi D, Poggi G, Jaidar Y, Toccafondi N, Giorgi R, Baglioni P (2013) Hydroxide nanoparticles for cultural heritage: Consolidation and protection of wall paintings and carbonate materials. J Collidal Interface Sci 292:42–49

    Article  Google Scholar 

  25. Saoud KM, Ibala I, El Ladki D, Ezzeldeen O, Saeed S (2014) Microwave assisted preparation of calcium hydroxide and barium hydroxide nanoparticles and their application for conservation of cultural heritage. In Proceedings Euro-Mediterranian Conference, 342–352

    Google Scholar 

  26. Kiazadeh A, Gomes HL, Rosa da Costa AM, Moreira JA, de Leuw M, Meskers SCJ (2012) Intrinsic and extrinsic resistive switching in a planar diode based on silver oxide nanoparticles. Thin Solid Films 522:407–411

    Article  CAS  Google Scholar 

  27. Chen X, Guo Z, Xu WH, Yao HB, Li MQ, Liu JH (2011) Templating synthesis of SnO2 nanotubes loaded with Ag2O nanoparticles and their enhanced gas sensing properties. Adv Funct Mater 21:2049–2056

    Article  CAS  Google Scholar 

  28. Agarwal RA, Gupta NK, Singh R, Nigam S, Ateeq B (2017) Ag/AgO nanoparticles grown via time dependent double mechanism in a 2D layered Ni-PCP and their antibacterial efficacy. Sci Rep 7:44852

    Article  CAS  Google Scholar 

  29. Iqbal S, Fakhar-e-Alam M, Akbar F, Shafiq M, Atif M, Amin N, Ismail M, Hanif A, Farooq WA (2019) Application of silver oxide nanoparticles for the treatment of cancer. J Mol Struct 1189:203–209

    Article  CAS  Google Scholar 

  30. Persson I, Sandström M, Yokoyama H (1995) Structure of the solvated strontium and barium ions in aqueous. Dimethyl Sulfoxide and Pyridine Solution, and Crystal Structure of Strontium and Barium Hydroxide Octahydrate, Zeitschrift für Naturforschung A 50:21–37

    CAS  Google Scholar 

  31. Irfan I, Graber S, So F, Gao Y (2012) Interplay of cleaning and de-doping in oxygen plasma treated high work function indium tin oxide (ITO). Org. Electronics 13:2028–2034

    Article  CAS  Google Scholar 

  32. Kittel C (2010) Introduction to solid state physics, Chapter 1, 7th Edition, John Wiley and Sons, 2002

    Google Scholar 

  33. Manohar H, Ramashesan S (2010) The crystal structure of barium hydroxide octahydrate. Z Kristallogr 119:357–374

    Google Scholar 

  34. Vaufrey D, Khalifa MB, Tardy J, Ghica C, Blanchin MG, Sandu C, Roger JA (2003) ITO-on-top organic light-emitting devices: a correlated study of opto-electronic and structural characteristics. Semicond Sci Technol 18:253–260

    Article  CAS  Google Scholar 

  35. Bochkova RI, Grishin IA, Kuzmin EA, Belov NV (1980) Refinement of the crystal structure of barium chloride dihydrate Ba Cl2 2(H2 O). Kristallografiya 25:1064–1065

    CAS  Google Scholar 

  36. Padmanabhan VM, Busing WR, Levy HA (1978) Barium chloride dihydrate by neutron diffraction. Acta Crystallographica B 34:2290–2292

    Article  Google Scholar 

  37. Lutz HD, Kellersohn T (1990) Hydrogen bonding in barium hydroxide trihydrate by neutron diffraction. Acta Crystallogr C 46:361–363

    Article  Google Scholar 

  38. Haram N, Ahmad N (2014) Formation of gold and silver nanochains and nanonetworks by liquid assisted laser ablation at elevated temperature, J Clust Sci, 3. 731

    Google Scholar 

  39. Salema MA, Bakra EA, El-Atta HG (2018) Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation ofCongo red in aqueous solution, Spectrochimica Acta A: Mol and Biomol Spectroscopy, 188, 155–163

    Google Scholar 

  40. Zhao J, Zeng Y, Liu C, Li Y (2010) Substrate temperature dependence of ZnTe epilayers grown on GaAs(0 0 1) by molecular beam epitaxy. J Crys Growth 312:1491

    Article  CAS  Google Scholar 

  41. Lipponer MA, Armbrust N, Dürr M, Höfer U (2012) Adsorption dynamics of ethylene on Si(001). J Chemical Phys 136:144703

    Article  CAS  Google Scholar 

  42. Kulkarni AM, Zukoski CF (2002) Nanoparticle crystal nucleation: influence of solution conditions. Langmuir 18:3090

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of INC departmental funds for TEM grids, ITO substrates, chemicals, etc. used in this work. The authors acknowledge critical comments from an expert electrochemist/editor in improving the manuscript. The authors acknowledge the help of staff members of USIF-AMU for SEM, EDS, TEM, and SAED measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Asif, M., Pundir, V., Ahmad, I. (2023). Synthesis of Self-stabilized Metal-Oxide and Metal-Hydroxide Nanorods. In: Uddin, I., Ahmad, I. (eds) Synthesis and Applications of Nanomaterials and Nanocomposites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-99-1350-3_4

Download citation

Publish with us

Policies and ethics