Skip to main content

Synthesis of Graphene Oxide and Its Metal Composites

  • Chapter
  • First Online:
Synthesis and Applications of Nanomaterials and Nanocomposites

Part of the book series: Composites Science and Technology ((CST))

  • 262 Accesses

Abstract

Because of the unique features of a derivative of allotropic carbon graphite that has been known as graphene oxide, a number of unique optical, electrical and thermal breakthroughs has come into limelight. This has made graphene oxide as the material having the most intriguing nature which is still under investigation. Furthermore, apart from just a precursor for the manufacturing of graphene, researchers have discovered a plethora of unique optical, electrical, and chemical characteristics of graphene oxide that may be used in a variety of applications. The synthesis of GO, its structure and characterisation along with its functionalization and GO applications are the subject of this chapter. Additionally, we have discussed the use of GO in environmental, medicinal, and biological applications, freestanding membranes, and diverse composite systems. The synthesis of graphene oxide and its nanocomposite based on novel nanoparticles will be covered in this chapter. A brief overview has also been provided, with a focus on the use of graphene oxide and its nanocomposite in various fields, particularly waste water treatment of water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10):5731–5736

    Article  CAS  Google Scholar 

  2. Ali MA, Singh C, Srivastava S, Admane P, Agrawal VV, Sumana G, John R, Panda A, Dong L, Malhotra BD (2017) Graphene oxide-metal nanocomposites for cancer biomarker detection. RSC Adv 7(57):35982–35991 https://doi.org/10.1039/C7RA05491B

  3. Behbudi G (2020) Mini review of graphene oxide for medical detection and applications. Adv Appl NanoBio-Technol 1(3):63–66

    CAS  Google Scholar 

  4. Bonaccorso F, Lombardo A, Hasan T, Sun Z, Colombo L, Ferrari AC (2012) Production and processing of graphene and 2d crystals. Mater Today 15(12):564–589. https://doi.org/10.1016/S1369-7021(13)70014-2

    Article  CAS  Google Scholar 

  5. Brodie BC (1860) Sur le poids atomique du graphite. Ann Chim Phys 59(466):e472

    Google Scholar 

  6. Buchsteiner A, Lerf A, Pieper J (2006) Water dynamics in graphite oxide investigated with neutron scattering. J Phys Chem B 110(45):22328–22338

    Article  CAS  Google Scholar 

  7. Burress JW, Gadipelli S, Ford J, Simmons JM, Zhou W, Yildirim T (2010) Graphene oxide framework materials: theoretical predictions and experimental results. Angew Chem Int Ed 49(47):8902–8904

    Article  CAS  Google Scholar 

  8. Cai B, Wang S, Huang L, Ning Y, Zhang Z, Zhang G-J (2014) Ultrasensitive label-free detection of PNA–DNA hybridization by reduced graphene oxide field-effect transistor biosensor. ACS Nano 8(3):2632–2638

    Google Scholar 

  9. Cury CPH, Gundappa SK, Fernando W (2009) Nanocomposites : synthesis, structure, properties and new application opportunities. Mater Res 12(1):1–39. https://doi.org/10.1590/S1516-14392009000100002

    Article  Google Scholar 

  10. Cao LI, Meziani MJ, Sahu S, Sun Y-P (2013) Photoluminescence properties of graphene versus other carbon nanomaterials. Acc Chem Res 46(1):171–180

    Article  CAS  Google Scholar 

  11. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–162. https://doi.org/10.1103/RevModPhys.81.109

    Article  CAS  Google Scholar 

  12. Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112(11):6027–6053 https://doi.org/10.1021/cr300115g

  13. Chung C, Kim Y-K, Shin D, Ryoo S-R, Hong BH, Min D-H (2013) Biomedical applications of graphene and graphene oxide. Acc Chem Res 46(10):2211–2224

    Article  CAS  Google Scholar 

  14. Ding Y, Cui R, Hu M, Li S, Zhai Q, Jiang Y (2017) Well-oriented bioarchitecture for immobilization of chloroperoxidase on graphene oxide nanosheets by site-specific interactions and its catalytic performance. J Mater Sci 52(17):10001–10012

    Google Scholar 

  15. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240

    Article  CAS  Google Scholar 

  16. Eda G, Chhowalla M (2010) Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv Mater 22(22):2392–2415

    Article  CAS  Google Scholar 

  17. Eda G, Lin Y-Y, Mattevi C, Yamaguchi H, Chen H-A, Chen I-S, Chen C-W, Chhowalla M (2010) Blue photoluminescence from chemically derived graphene oxide. Adv Mater 22(4):505–509

    Google Scholar 

  18. Geim AK, Novoselov KS (2010) The rise of graphene. In: Nanoscience and technology: a collection of reviews from nature journals. World Scientific, pp 11–19

    Google Scholar 

  19. Ghorbani M, Abdizadeh H, Golobostanfard MR (2015) reduction of graphene oxide via modified hydrothermal method. Procedia Mater Sci 11:326–330. https://doi.org/10.1016/j.mspro.2015.11.104

    Article  CAS  Google Scholar 

  20. Gómez-Navarro C, Meyer JC, Sundaram RS, Chuvilin A, Kurasch S, Burghard M, Kern K, Kaiser U (2010) Atomic structure of reduced graphene oxide. Nano Lett 10(4):1144–1148

    Article  Google Scholar 

  21. Han HJ, Chen YN, Wang ZJ (2015) Effect of microwave irradiation on reduction of graphene oxide films. RSC Adv 5(113):92940–92946

    Article  CAS  Google Scholar 

  22. Hasan T, Torrisi F, Sun Z, Popa D, Nicolosi V, Privitera G, Bonaccorso F, Ferrari AC (2010) Solution-phase exfoliation of graphite for ultrafast photonics. Phys Status Solidi (B) Basic Res 247(11–12):2953–2957. https://doi.org/10.1002/pssb.201000339

  23. He H, Klinowski J, Forster M, Lerf A (1998) A new structural model for graphite oxide. Chem Phys Lett 287(1–2):53–56

    Article  CAS  Google Scholar 

  24. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De Sukanta I, McGovern T et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568. https://doi.org/10.1038/nnano.2008.215

    Article  CAS  Google Scholar 

  25. Horiuchi S, Gotou T, Fujiwara M, Sotoaka R, Hirata M, Kimoto K, Asaka T, Yokosawa T, Matsui Y, Watanabe K (2003) Carbon nanofilm with a new structure and property. Jpn J Appl Phys 42(9A):L1073

    Article  CAS  Google Scholar 

  26. Hu H, Onyebueke L, Abatan A (2015) Characterizing and modeling mechanical properties of nanocomposites-review and evaluation. J Miner Mater Charact Eng. https://doi.org/10.4236/jmmce.2010.94022

    Article  Google Scholar 

  27. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  28. Inagaki M, Kang F (2014) Engineering and applications of carbon materials. materials science and engineering of carbon: fundamentals. https://doi.org/10.1016/b978-0-12-800858-4.00003-6

  29. Jia H-P, Dreyer DR, Bielawski CW (2011) C–H oxidation using graphite oxide. Tetrahedron 67(24):4431–4434

    Article  CAS  Google Scholar 

  30. Johari P, Shenoy VB (2011) Modulating optical properties of graphene oxide: role of prominent functional groups. ACS Nano 5(9):7640–7647

    Article  CAS  Google Scholar 

  31. Kim F, Cote LJ, Huang J (2010) Graphene oxide: surface activity and two-dimensional assembly. Adv Mater 22(17):1954–1958

    Article  CAS  Google Scholar 

  32. Lateef A, Nazir R (2017) Metal nanocomposites : synthesis , characterization and their applications. Sci Appl Tailored Nanostruct 239–56

    Google Scholar 

  33. Lee G, Kim KS, Cho K (2011) Theoretical study of the electron transport in graphene with vacancy and residual oxygen defects after high-temperature reduction. J Phys Chem C 115(19):9719–9725

    Article  CAS  Google Scholar 

  34. Liu F, Choi JY, Seo TS (2010) Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer. Biosens Bioelectron 25(10):2361–2365

    Article  CAS  Google Scholar 

  35. Liu J, Cui L, Losic D (2013) Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater 9(12):9243–9257

    Article  CAS  Google Scholar 

  36. Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5(9):6971–6980

    Article  CAS  Google Scholar 

  37. Liu Y, Li Q, Feng Y-Y, Ji G-S, Li T-C, Jie T, Gu X-D (2014) Immobilisation of acid pectinase on graphene oxide nanosheets. Chem Pap 68(6):732–738

    Google Scholar 

  38. Liu Y, Yu D, Zeng C, Miao Z, Dai L (2010) Biocompatible graphene oxide-based glucose biosensors. Langmuir 26(9):6158–6160

    Google Scholar 

  39. Mattevi C, Eda G, Agnoli S, Steve Miller K, Mkhoyan A, Celik O, Mastrogiovanni D, Granozzi G, Carfunkel E, Chhowalla M (2009) Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv Func Mater 19(16):2577–2583. https://doi.org/10.1002/adfm.200900166

    Article  CAS  Google Scholar 

  40. McAllister MJ, Li J-L, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Robert K, Prud’homme RK, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19(18):4396–4404

    Google Scholar 

  41. Mousavi S, Zarei M, Hashemi S (2018) polydopamine for biomedical application and drug delivery system. Med Chem (Los Angeles) 8:218–229

    Article  Google Scholar 

  42. Novoselov KS (2011) Nobel lecture: graphene: materials in the flatland. Rev Mod Phys 83(3):837–849. https://doi.org/10.1103/RevModPhys.83.837

    Article  CAS  Google Scholar 

  43. O’Neill A, Khan U, Nirmalraj PN, Boland J, Coleman JN (2011) Graphene dispersion and exfoliation in low boiling point solvents. The J Phys Chem C 115(13):5422–5428

    Article  Google Scholar 

  44. Pandey D, Reifenberger R, Piner R (2008) Scanning probe microscopy study of exfoliated oxidized graphene sheets. Surf Sci 602(9):1607–1613

    Article  CAS  Google Scholar 

  45. Paredes JI, Villar-Rodil S, Martínez-Alonso A, Tascon JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24(19):10560–10564

    Article  CAS  Google Scholar 

  46. Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228

    Article  CAS  Google Scholar 

  47. Rasheed M, Shihab S, Wissam Sabah O (2021) An investigation of the structural, electrical and optical properties of graphene-oxide thin films using different solvents. J Phys Conf Ser 1795:12052. IOP Publishing

    Google Scholar 

  48. Ray SC (2015) Application and uses of graphene oxide and reduced graphene oxide. Elsevier Inc., Applications of graphene and graphene-oxide based nanomaterials. https://doi.org/10.1016/b978-0-323-37521-4.00002-9

  49. Sabzevari M, Cree D, Wilson L (2018) Preparation and characterization of graphene oxide cross-linked composites 2014. https://doi.org/10.25071/10315/35427

  50. Saha SK, Bhaumik S, Maji T, Mandal TK, Pal AJ (2014) Solution-processed reduced graphene oxide in light-emitting diodes and photovoltaic devices with the same pair of active materials. RSC Adv 4(67):35493–35499

    Article  CAS  Google Scholar 

  51. Sametband M, Kalt I, Gedanken A, Sarid R (2014) Herpes simplex virus type-1 attachment inhibition by functionalized graphene oxide. ACS Appl Mater Interfaces 6(2):1228–1235

    Article  CAS  Google Scholar 

  52. Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110(17):8535–8539

    Google Scholar 

  53. Shao Y, Wang J, Engelhard M, Wang C, Lin Y (2010) Facile and controllable electrochemical reduction of graphene oxide and its applications. J Mater Chem 20(4):743–748

    Google Scholar 

  54. Shin H-J, Kim KK, Benayad A, Yoon S-M, Park HK, Jung I-S, Jin MH, Jeong H-K, Kim JM, Choi J-Y (2009) efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Func Mater 19(12):1987–1992

    Google Scholar 

  55. Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8(6):1679–1682

    Google Scholar 

  56. Singh K, Srivastava G, Talat M, Srivastava ON, Kayastha AM (2015) α-amylase immobilization onto functionalized graphene nanosheets as scaffolds: its characterization, kinetics and potential applications in starch based industries. Biochem Biophys Rep 3:18–25

    Google Scholar 

  57. Singh PK, Singh U, Bhattacharya B, Rhee HW (2014) Electrochemical synthesis of graphene oxide and its application as counter electrode in dye sensitized solar cell. J Renew Sustain Energy 6(1). https://doi.org/10.1063/1.4863834

  58. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Google Scholar 

  59. Staudenmaier L (1898) Verfahren Zur Darstellung Der Graphitsäure. Ber Dtsch Chem Ges 31:1481–1487

    Google Scholar 

  60. Su C, Loh KP (2013) Carbocatalysts: graphene oxide and its derivatives. Acc Chem Res 46(10):2275–2285

    Google Scholar 

  61. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212

    Google Scholar 

  62. Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18(11):2740–2749

    Google Scholar 

  63. Tang L, Li X, Ji R, Teng KS, Tai G, Ye J, Wei C, Lau SP (2012) Bottom-up synthesis of large-scale graphene oxide nanosheets. J Mater Chem 22(12):5676–5683. https://doi.org/10.1039/c2jm15944a

  64. Torrisi F, Hasan T, Wu W, Sun Z, Lombardo A, Kulmala TS, Hsieh G-W et al (2012) Inkjet-printed graphene electronics 4:2992–3006

    Google Scholar 

  65. Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High-Throughput solution processing of large-scale graphene. Nat Nanotechnol 4(1):25

    Google Scholar 

  66. Wang X, Zhi L, Tsao N, Tomović Ž, Li J, Müllen K (2008) Transparent carbon films as electrodes in organic solar cells. Angewandte Chemie—Int Edition 47(16):2990–2992. https://doi.org/10.1002/anie.200704909

  67. Wang Y, Wan Y, Zhang D (2010) Reduced graphene sheets modified glassy carbon electrode for electrocatalytic oxidation of hydrazine in alkaline media. ElectrochemCommun 12(2):187–190

    Google Scholar 

  68. Warner JH, Schäffel F, Bachmatiuk A, Rümmeli MH (2013) Properties of graphene. In Graphene. https://doi.org/10.1016/B978-0-12-394593-8.00003-5

  69. Yang X, Wang Y, Huang X, Ma Y, Huang Y, Yang R, Duan H, Chen Y (2011) Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and PH-sensitivity. J Mater Chem 21(10):3448–3454

    Google Scholar 

  70. Yu W, Sisi L, Haiyan Y, Jie L (2020) Progress in the functional modification of graphene/graphene oxide: a review. RSC Adv 10(26):15328–15345

    Google Scholar 

  71. Zanin H, Margraf-Ferreira A, Da Silva NS, Marciano FR, Corat EJ, Lobo AO (2014) Graphene and carbon nanotube composite enabling a new prospective treatment for trichomoniasis disease. Mater Sci Eng, C 41:65–69

    Google Scholar 

  72. Zhang L, Xia J, Zhao Q, Liu L, Zhang Z (2010) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6(4):537–544

    Google Scholar 

  73. Zhang X, Xie H, Liu Z, Tan C, Luo Z, Li H, Lin J et al (2015) Black phosphorus quantum dots. Angewandte Chemie—Int Edition 54(12):3653–3657. https://doi.org/10.1002/anie.201409400

  74. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Uddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khalilullah, A., Anwer, R., Uddin, I. (2023). Synthesis of Graphene Oxide and Its Metal Composites. In: Uddin, I., Ahmad, I. (eds) Synthesis and Applications of Nanomaterials and Nanocomposites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-99-1350-3_3

Download citation

Publish with us

Policies and ethics