Skip to main content

Synthesis of Magnetic Ferrite and TiO2-Based Nanomaterials for Photocatalytic Water Splitting Applications

  • Chapter
  • First Online:
Synthesis and Applications of Nanomaterials and Nanocomposites

Part of the book series: Composites Science and Technology ((CST))

  • 280 Accesses

Abstract

Clean non fossil sources of energy have an increasing urgency to support industrial and population growth to achieve this goal, the continuous development of nanostructures and nanomaterials for different applications such as photocatalytic water splitting is under intense investigation. Two of the most important materials namely, titanium dioxide, TiO2, and ferrites having the MFe2O4 structure where M is transition metal are introduced in this chapter. Ferrites and titanium dioxide are two interesting nanostructures having great potential. Ferrites have many members in the family hence, offering diversity in structural and physical properties which in turn give chance for a large variety of purposes and applications. They own an energy band gap that is small enough to crop photons from the visible light region. They are also abundant on earth and have important physical properties like magnetism and multiferroicity in addition to being biocompatible which will increase their usability. On the other hand, TiO2 has several advantages, including its stability in terms of chemical and thermal properties, in addition to its availability, photoactivity, and relatively elevated charge transfer ability. Furthermore, the nontoxicity, high oxidative strength, and cheap price are additional advantages. Despite the large band gap and its related UV-light activation, TiO2 is one of the highly studied photocatalysts. Moreover, it has been extensively investigated in many aspects, including the kind of the oxidative species (·OH radicals vs. h+), the location of the photoinduced reactions (at the surface or in the bulk), and the ways that enhance the photocatalytic performance.. Many of the synthesis techniques for both, ferrites and TiO2 were adopted to serve definite purposes like control over phase purity, morphology, size, and dispersion which are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn SH, Koh JH, Seo JA, Kim JH (2010) Structure control of organized mesoporous TiO2 films templated by graft copolymers for dye -sensitized solar cells. Chem Commun 46(11):1935–1937

    Article  CAS  Google Scholar 

  2. AL-Azri ZHN, Chen W-T, Chan A, Jovic V, Ina T, Idriss H, Waterhouse GIN (2015) The roles of metal co-catalysts and reaction media in photocatalytic hydrogen production: performance evaluation of M/TiO2 photocatalysts (M=Pd, Pt, Au) in different alcohol–water mixtures. J Catal 329:355–367

    Google Scholar 

  3. Albuquerque AS, Tolentino MVC, Ardisson JD, Moura FCC, De Mendona R, MacEdo WAA (2012) Nanostructured ferrites: structural analysis and catalytic activity. Ceram Int 38(3):2225–2231

    Article  CAS  Google Scholar 

  4. Al-Madanat O (2021) Photocatalytic transformation of water pollutants into fuels. Doctoral thesis, Gottfried Wilhelm Leibniz Universität Hannover, Germany

    Google Scholar 

  5. A-Madanat O, AlSalka Y, Curti M, Dillert R, Bahnemann DW (2020) Mechanistic insights into hydrogen evolution by photocatalytic reforming of naphthalene. ACS Catal 10(13):7398–7412

    Google Scholar 

  6. A-Madanat O, AlSalka Y, Dillert R, Bahnemann DW (2021a) Photocatalytic H2 production from naphthalene by various TiO2 photocatalysts: impact of Pt loading and formation of intermediates. Catalysts 11(1):107

    Google Scholar 

  7. A-Madanat O, AlSalka Y, Ramadan W, Bahnemann DW (2021b) TiO2 photocatalysis for the transformation of aromatic water pollutants into fuels. Catalysts 11(3):317

    Google Scholar 

  8. A-Madanat O, Curti M, Günnemann C, AlSalka Y, Dillert R, Bahnemann DW (2021c) TiO2 photocatalysis: impact of the platinum loading method on reductive and oxidative half-reactions. Catal Today 380:3–15

    Google Scholar 

  9. Al-Madanat O, Nunes BN, AlSalka Y, Hakki A, Curti M, Patrocinio AOT, Bahnemann DW (2021d) Application of EPR spectroscopy in TiO2 and Nb2O5 photocatalysis. Catalysts 11:1514

    Google Scholar 

  10. Almquist CB, Biswas P (2002) Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity. J Catal 212(2):145–156

    Article  CAS  Google Scholar 

  11. Alsalka Y (2020) Photocatalytic water splitting for solar hydrogen production and simultaneous decontamination of organic pollutants. Doctoral thesis, Gottfried Wilhelm Leibniz Universität

    Google Scholar 

  12. AlSalka Y, Al-Madanat O, Curti M, Hakki A, Bahnemann DW (2020) Photocatalytic H2 evolution from oxalic acid: Effect of cocatalysts and carbon dioxide radical anion on the surface charge transfer mechanisms. ACS Appl Energy Mater 3(7):6678–6691

    Article  CAS  Google Scholar 

  13. AlSalka Y, Granone LI, Ramadan W, Hakki A, Dillert R, Bahnemann DW (2019) Iron-based photocatalytic and photoelectrocatalytic nano-structures: facts, perspectives, and expectations. Appl Catal B 244:1065–1095

    Article  CAS  Google Scholar 

  14. AlSalka Y, Hakki A, Fleisch M, Bahnemann DW (2018) Understanding the degradation pathways of oxalic acid in different photocatalytic systems: towards simultaneous photocatalytic hydrogen evolution. J Photochem Photobiol, A 366:81–90

    Article  CAS  Google Scholar 

  15. AlSalka Y, Hakki A, Schneider J, Bahnemann DW (2018) Co-catalyst-free photocatalytic hydrogen evolution on TiO2: synthesis of optimized photocatalyst through statistical material science. Appl Catal B 238:422–433

    Article  CAS  Google Scholar 

  16. An SY, Shim I-B, Kim CS (2002) Mössbauer and magnetic properties of Co–Ti substituted barium hexaferrite nanoparticles. J Appl Phys 91(10):8465

    Article  CAS  Google Scholar 

  17. Harriman A, Pickering I, Thomas J (1988) Metal oxides as heterogeneous catalysts for oxygen evolution under photochemical conditions. J Chem Soc Faraday Trans 1(84):2795–2806

    Google Scholar 

  18. Anton AIJ (1990) Measurements of turbulence suppression due to a transverse magnetic field applied on a ferrofluid motion. J Magn Magn Mater 85:137

    Article  CAS  Google Scholar 

  19. Aoyama Y, Oaki Y, Ise R, Imai H (2012) Mesocrystal nanosheet of rutile TiO2 and its reaction selectivity as a photocatalyst. Cryst Eng Comm 14(4):1405–1411

    Article  CAS  Google Scholar 

  20. Bai H, Liu Z, Sun DD (2010) Hierarchically multifunctional TiO2 nano-thorn membrane for water purification. Chem Commun 46:6542–6544

    Article  CAS  Google Scholar 

  21. Bamwenda GR, Tsubota S, Nakamura T, Haruta M (1995) Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of Au-TiO2 and Pt-TiO2. J Photochem Photobiol, A 89(2):177–189

    Article  CAS  Google Scholar 

  22. Ma B, Yang J, Han H, Wang J, Zhang X, Li C (2010) Enhancement of photocatalytic water oxidation activity on IrOx ZnO/ Zn2-x GeO4-x–3yN2y catalyst with the solid solution phase junction. J Phys Chem C 114(29):12818–12822

    Article  CAS  Google Scholar 

  23. Barbooram K, Ye Z-G (2006) New soft chemical routes to ferroelectric SrBi2Ta2O9. Chem Mater 18(2):532–540

    Article  Google Scholar 

  24. Bessekhouad Y, Robert D, Weber JV (2003) Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions. J Photochem Photobiol, A 157(1):47–53

    Article  CAS  Google Scholar 

  25. Brinker CJ (1988) Hydrolysis and condensation of silicates: effects on structure. J Non-Cryst Solids 100(1):31–50

    Article  CAS  Google Scholar 

  26. Bruce IJ, Taylor J, Todd M, Davies MJ, Borioni E, Sangregorio C, Sen T (2004) Synthesis, characterisation and application of silica-magnetite nanocomposites. J Magn Magn Mater 284:145–160

    Article  CAS  Google Scholar 

  27. Aydın C, Al-Hartomy O, Al-Ghamdi AA, Al-Hazmi F, Yahia IS, El-Tantawy F, Yakuphanoglu F (2012) Controlling of crystal size and optical band gap of CdO nanopowder semiconductors by low and high Fe contents. J Electroceram 29(2):155–162

    Article  Google Scholar 

  28. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32(1–2):33–177

    Article  CAS  Google Scholar 

  29. Chae SY, Park MK, Lee SK, Kim TY, Kim SK, Lee WI (2003) Preparation of size controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films. Chem Mater 15(17):3326–3331

    Article  CAS  Google Scholar 

  30. Chen JP, Sorensen CM, Klabunde KJ, Hadjipanayis GC, Devlin E, Kostikas A (1996) Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. Phys Rev B 54(13):9288

    Article  CAS  Google Scholar 

  31. Chen J, Zhao D, Diao Z, Wang M, Guo L, Shen S (2015) Bifunctional modification of graphitic carbon nitride with MgFe2O4 for enhanced photocatalytic hydrogen generation. ACS Appl Mater Interfaces 7(33):18843–18848

    Article  CAS  Google Scholar 

  32. Chen X, Burda C (2008) The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J Am Chem Soc 130:5018–5019

    Article  CAS  Google Scholar 

  33. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959

    Article  CAS  Google Scholar 

  34. Chen X, Liu L, Huang F (2015) Black titanium dioxide (TiO2) nanomaterials. Chem Soc Rev 44:1861–1885

    Article  CAS  Google Scholar 

  35. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570

    Article  CAS  Google Scholar 

  36. Cheng Y, Huang W, Zhang Y, Zhu L, Liu Y, Fan X, Cao X (2010) Preparation of TiO2 hollow nanofibers by electrospining combined with sol–gel process. Cryst Eng Comm 12(7):2256–2260

    Article  CAS  Google Scholar 

  37. Chiarello GL, Forni L, Selli E (2009) Photocatalytic hydrogen production by liquid- and gas-phase reforming of CH3OH over flame-made TiO2 and Au/TiO2. Catal Today 144(1):69–74

    Article  CAS  Google Scholar 

  38. Cho S, Jang J-W, Lee K-H, Lee JS (2014) Research update: Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes. APL Mater 2:010703

    Article  Google Scholar 

  39. Chretien S, Metiu H (2011) Electronic structure of partially reduced rutile TiO2 (110) surface: where are the unpaired electrons located? J Phys Chem C 115(11):4696–4705

    Article  CAS  Google Scholar 

  40. Cozzoli D, Kornowski A, Weller H (2003) Low-Temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. J Am Chem Soc 125:14539–14548

    Article  CAS  Google Scholar 

  41. Damm C, Sakthivel S, Kisch H (2006) UV and visible light acrylate photopolymerisation initiated by nitrogen- or carbon-doped titanium dioxide. Z Phys Chem 220(4):477–486

    Article  CAS  Google Scholar 

  42. Das D, Veziroglu TN (2008) Advances in biological hydrogen production processes. Int J Hydrogen Energy 33(21):6046–6057

    Article  CAS  Google Scholar 

  43. Del Castillo J, Rodríguez VD, Yanes AC, Méndez-Ramos J, Torres ME (2005) Luminescent properties of transparent nanostructured Eu3+ doped SnO2–SiO2 glass-ceramics prepared by the sol–gel method. Nanotechnology 16:S300

    Article  Google Scholar 

  44. Taffa D, Dillert R, Ulpe A, Bauerfeind K, Bredow T, Bahnemann DW, Wark M (2016) Photoelectrochemical and theoretical investigations of spinel type ferrites (MxFe3−xO4) for water splitting: a mini-review. J Photonics Energy 7(1):012009

    Article  Google Scholar 

  45. Di Bartolomeo A (2016) Graphene schottky diodes: an experimental review of the rectifying graphene/semiconductor heterojunction. Phys Rep 606:1–58

    Article  Google Scholar 

  46. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5–8):53–229

    Article  CAS  Google Scholar 

  47. Dillert R, Taffa DH, Wark M, Bredow T, Bahnemann DW (2015) Research Update: Photoelectrochemical water splitting and photocatalytic hydrogen production using ferrites (MFe2O4) under visible light irradiation. APL Mater 3:104001

    Article  Google Scholar 

  48. Doman L (2017) Today in energy [Online]. USA: U.S. Energy Information Administration. Available: https://www.eia.gov/todayinenergy/detail.php?id=32912. Accessed 08 Jan 2020

  49. Du S, Lian J, Zhang F (2022) Visible light-responsive N-doped TiO2 photocatalysis: synthesis, characterizations, and applications. Trans Tianjin Univ 28:33–52

    Article  CAS  Google Scholar 

  50. Eidsvåg H, Bentouba S, Vajeeston P, Yohi S, Velauthapillai D (2021) TiO2 as a photocatalyst for water splitting: an experimental and theoretical review. Molecules 26(6):1687

    Article  Google Scholar 

  51. Enke CG (1974) Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides. Mater Corros 25(10):801–802

    Google Scholar 

  52. Fantozzi G, Chevalier J, Guilhot B (2001) Processing, microstructure, and thermomechanical behavior of ceramics. Adv Eng Mater 3(8):563

    Article  CAS  Google Scholar 

  53. Farsinezhad S, Sharma H, Shankar K (2015) Interfacial band alignment for photocatalytic charge separation in TiO2 nanotube arrays coated with CuPt nanoparticles. Phys Chem Chem Phys 17:29723–29733

    Article  CAS  Google Scholar 

  54. Fazio G, Selli D, Ferraro L, Seifert G, Di Valentin C (2018) Curved TiO2 nanoparticles in water: short (chemical) and long (physical) range interfacial effects. ACS Appl Mater Interfaces 10(35):29943–29953

    Article  CAS  Google Scholar 

  55. Fonash SJ (2010) Chapter three: structures, materials, and scale. In: Fonash SJ (ed) Solar cell device physics, 2nd edn. Academic Press, Boston

    Google Scholar 

  56. Friehs E, AlSalka Y, Jonczyk R, Lavrentieva A, Jochums A, Walter J-G, Stahl F, Scheper T, Bahnemann DW (2016) Toxicity, phototoxicity and biocidal activity of nanoparticles employed in photocatalysis. J Photochem Photobiol, C 29:1–28

    Article  CAS  Google Scholar 

  57. Furube A, Du L, Hara K, Katoh R, Tachiya M (2007) Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J Am Chem Soc 129(48):14852–14853

    Article  CAS  Google Scholar 

  58. Gee SH, Hong YK, Erickson DW, Park MH, Sur JC (2003) Synthesis and aging effect of spherical magnetite nanoparticles for biosensor applications. J Appl Phys 93(10):7560

    Article  CAS  Google Scholar 

  59. Godula-Jopek A (2015) Hydrogen production: by electrolysis. Wiley-VCH, Weinheim, Germany

    Book  Google Scholar 

  60. Grasset F, Labhsetwar N, Li D, Park DC, Saito N, Haneda H, Cador O, Roisnel T, Mornet S, Duguet E, Portier J, Etourneau JL, Grasset F, Labhsetwar N, Li D, Park DC, Saito N, Haneda H, Cador O, Roisnel T, Mornet S, Duguet E, Portier JE (2002) Synthesis and magnetic characterization of zinc ferrite nanoparticles with different environments: powder, colloidal solution, and zinc ferrite−silica core−shell nanoparticles. Langmuir 18(21):8209–8216

    Article  CAS  Google Scholar 

  61. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed 52(29):7372–7408

    Article  CAS  Google Scholar 

  62. Hakki A, AlSalka Y, Mendive C, Ubogui J, Dos Santos Claro P, Bahnemann DW (2018) Hydrogen production by heterogeneous photocatalysis. In: Wandelt K (ed) Encyclopedia of interfacial chemistry. Elsevier, Oxford

    Google Scholar 

  63. Hasegawa G, Morisato K, Kanamori K, Nakanishi K (2011) New hierarchically porous titania monoliths for chromatographic separation media. J Sep Sci 34(21):3004–3010

    Article  CAS  Google Scholar 

  64. He X, Song G, Zhu J (2005) Non-stoichiometric NiZn ferrite by sol-gel processing. Mater Lett 59(14–15):1941–1944

    Article  CAS  Google Scholar 

  65. Hench LL, West JK (1990) The sol-gel process. Chem Rev 90(1):33–72

    Article  CAS  Google Scholar 

  66. Hernandez BA, Chang K-S, Fisher ER, Dorhout PK (2002) Sol-gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes. Chem Mater 14(2):480–482

    Article  CAS  Google Scholar 

  67. Hernández-Ramírez A, Medina-Ramírez I (2015) Semiconducting materials. In: Hernández-Ramírez A, Medina-Ramírez I (eds) Photocatalytic semiconductors: synthesis, characterization, and environmental applications. Springer International Publishing, Cham

    Google Scholar 

  68. Toulhoat H, Raybaud P (2020) Prediction of optimal catalysts for a given chemical reaction. Catal Sci Technol 10:2069–2081

    Article  CAS  Google Scholar 

  69. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  70. Hou Y, Zuo F, Dagg A, Feng PA (2013) Three-dimensional branched cobalt-doped α-Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation. Angew Chem Int Ed 52:1248–1252

    Article  CAS  Google Scholar 

  71. Hsu WC, Chen SC, Kuo PC, Lie CT, Tsai WS (2004) Preparation of NiCuZn ferrite nanoparticles from chemical co-precipitation method and the magnetic properties after sintering. Mat Sci Eng B 111:142–149

    Article  Google Scholar 

  72. Hu Q, Zhao J, Wang Y, Zhu L, Li M, Li G, Wang Y, Ge FJ (2003) Sol–gel encapsulated cobalt (III) acetylacetonate for air oxidation of penicillin derivatives. Catal A: Chem 200:271–277

    Article  CAS  Google Scholar 

  73. Ida S, Yamada K, Matsuka M, Hagiwara H, Ishihara T (2012) Photoelectrochemical hydrogen production from water using p-type and n-type oxide semiconductor electrodes. Electrochim Acta 82:397–401

    Article  CAS  Google Scholar 

  74. Ivanova I, Kandiel TA, Cho YJ, Choi W, Bahnemann DW (2018) Mechanisms of photocatalytic molecular hydrogen and molecular oxygen evolution over La-Doped NaTaO3 particles: effect of different cocatalysts and their specific activity. ACS Catal 8:2313–2325

    Article  CAS  Google Scholar 

  75. Iwata K, Takaya T, Hamaguchi H-O, Yamakata A, Ishibashi T-A, Onishi H, Kuroda H (2004) Carrier dynamics in TiO2 and Pt/TiO2 powders observed by femtosecond time-resolved near-infrared spectroscopy at a spectral region of 0.9− 1.5 μm with the direct absorption method. J Phys Chem B 108:20233–20239

    Article  CAS  Google Scholar 

  76. Yang JH, Wang DE, Han HX, Li C (2013) Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res 46:1900–1909

    Article  CAS  Google Scholar 

  77. Kim JH, Kim HE, Kim JH, Lee JS (2020) Ferrites: emerging light absorbers for solar water splitting. J Mater Chem A 8:9447–9482

    Article  CAS  Google Scholar 

  78. Jiang Z, Zhu J, Liu D, Wei W, Xie J, Chen M (2014) In situ synthesis of bimetallic Ag/Pt loaded single-crystalline anatase TiO2 hollow nano-hemispheres and their improved photocatalytic properties. Cryst Eng Comm 16:2384–2394

    Article  CAS  Google Scholar 

  79. Kampouri S, Stylianou KC (2019) Dual-functional photocatalysis for simultaneous hydrogen production and oxidation of organic substances. ACS Catal 9(5):4247–4270. https://doi.org/10.1021/acscatal.9b00332

  80. Kang J-G, Sohn Y (2011) Interfacial nature of Ag nanoparticles supported on TiO2 photocatalysts. J Mater Sci 47:824–832

    Article  Google Scholar 

  81. Kato H, Asakura K, Kudo A (2003) Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc 125(10):3082–3089. Available from https://doi.org/10.1021/ja027751g

  82. Katsumatak KI, Okazaki S, Cordonier CEJ, Shichi T, Sasaki T, Fujishima A (2010) Preparation and characterization of self-cleaning glass for vehicle with niobia nanosheets. ACS Appl Mater Interfaces 2:1236–1241

    Article  Google Scholar 

  83. Kazuya N, Baoshun L, Yosuke I, Munetoshi S, Hidenori S, Tsuyoshi O, Hideki S, Taketoshi M, Masahiko A, Katsuhiko T, Akira F (2011) Fabrication and photocatalytic properties of TiO2 nanotube arrays modified with phosphate. Chem Lett 40:1107–1109

    Article  Google Scholar 

  84. Kim CS, Yi YS, Park K-T, Namgung H, Lee J-G (1999) Growth of ultrafine Co–Mn ferrite and magnetic properties by a sol–gel method. J Appl Phys 35(8):5223

    Article  Google Scholar 

  85. Kim E, Nishimura N, Magesh G, Kim JY, Jang J-W, Jun H, Kubota J, Domen K, Lee JS (2013) Fabrication of CaFe2O4/TaON heterojunction photoanode for photoelectrochemical water oxidation. J Am Chem Soc 135:5375–5383

    Article  CAS  Google Scholar 

  86. Kim HG, Borse PH, Jang JS, Jeong ED, Jung O-S, Suh YJ, Lee JS (2009) Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis. Chem Commun 5889−5891

    Google Scholar 

  87. Kim WC, Kim SJ, Sur JC, Kim CS (2002) Structural and magnetic properties of CoFe1.9RE0.1O4 (RE=Y, La) prepared by a sol–gel method. J Magn Magn Mater 242–245:197–200

    Article  Google Scholar 

  88. Kim WC, Park SI, Kim SJ, Lee SW, Kim CS (2000) Magnetic and structural properties of ultrafine Ni–Zn–Cu ferrite grown by a sol–gel method. J Appl Phys 87(9):6241

    Article  CAS  Google Scholar 

  89. Kisch H (2014) Molecular photochemistry. Semicond Photocatalysis 9–46

    Google Scholar 

  90. Kisch H (2015) Semiconductor photocatalysis principle and applications. Wiley-VCH

    Google Scholar 

  91. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  CAS  Google Scholar 

  92. Kundu A, Upadhyay C, Verma HC (2003) Magnetic properties of a partially inverted zinc ferrite synthesized by a new coprecipitation technique using urea. Phys Lett A 311:410–415

    Article  CAS  Google Scholar 

  93. Lawaezeck R, Menzel M, Pietsch H (2004) Superparamagnetic iron oxide particles: contrast media for magnetic resonance imaging. Appl Organometal Chem 18:506–513

    Article  Google Scholar 

  94. Lee JS (2005) Photocatalytic water splitting under visible light with particulate semiconductor catalysts. Catal Surv Asia 9:217–227

    Article  CAS  Google Scholar 

  95. Lee SW, Ryu YG, Yang KJ, Jung K-D, An SY, Kim CS (2002) Magnetic properties of Zn2+ substituted ultrafine Co-ferrite grown by a sol-gel method. J Appl Phys 91(10):7610

    Article  CAS  Google Scholar 

  96. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci 103:15729–15735

    Article  CAS  Google Scholar 

  97. Li G, Blake GR, Palstra TTM (2017) Vacancies in functional materials for clean energy storage and harvesting: the perfect imperfection. Chem Soc Rev 46:1693–1706

    Article  CAS  Google Scholar 

  98. Li J-J, Xu W, Yuan H-M, Chen J-S (2004) Sol–gel synthesis and magnetization study of Mn1−xCuxFe2O4 (x=0, 0.2) nanocrystallites. Solid State Commun 131:519–522

    Article  CAS  Google Scholar 

  99. Li Y, Peng Y-K, Hu L, Zheng J, Prabhakaran D, Wu S, Puchtler TJ, Li M, Wong K-Y, Taylor RA, Tsang SCE (2019) Photocatalytic water splitting by N-TiO2 on MgO (111) with exceptional quantum efficiencies at elevated temperatures. Nat Commun 10:4421

    Article  Google Scholar 

  100. Liao C-H, Huang C-W, Wu J (2012) Hydrogen production from semiconductor-based photocatalysis via water splitting. Catalysts 2:490–516

    Article  CAS  Google Scholar 

  101. Lin HY, Shih CY (2016) Efficient one-pot microwave-assisted hydrothermal synthesis of M (M=Cr, Ni, Cu, Nb) and nitrogen co-doped TiO2 for hydrogen production by photocatalytic water splitting. J Mol Catal A: Chem 411:128–137

    Article  CAS  Google Scholar 

  102. Linsebiglerl A-L, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  Google Scholar 

  103. Liu B, Nakata K, Sakai M, Saito H, Ochiai T, Murakami T, Takagi K, Fujishima A (2011) Mesoporous TiO2 core-shell spheres composed of nanocrystals with exposed high-energy facets: facile synthesis and formation mechanism. Langmuir 27:8500–8508

    Article  CAS  Google Scholar 

  104. Livage J, Henry M, Sanchez C (1988) Sol-gel chemistry of transition metal oxides. Prog Solid St Chem 18:259–341

    Article  CAS  Google Scholar 

  105. Macak JM, Zlamal M, Krysa J, Schmuki P (2007) Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 3:300–304

    Article  CAS  Google Scholar 

  106. Marschall R (2014) Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv Funct Mater 24(17):2421–2440

    Article  CAS  Google Scholar 

  107. Mascolo M, Pei Y, Ring T (2013) Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials 6(12):5549–5567

    Article  CAS  Google Scholar 

  108. Massart R, Cabuil V (1987) New trends in chemistry of magnetic colloids: polar and non polar magnetic fluids, emulsions, capsules and vesicles. J Chim Phys PCB 84:967–973

    Article  CAS  Google Scholar 

  109. Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248

    Article  Google Scholar 

  110. Matsumoto Y (1996) Energy positions of oxide semiconductors and photocatalysis with iron complex oxides. J Solid State Chem 126(2):227–234

    Article  CAS  Google Scholar 

  111. Michaelson HB (1977) The work function of the elements and its periodicity. J Appl Phys 48:4729–4733

    Article  CAS  Google Scholar 

  112. Mills A, Le Hunte S (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol, A 108:1–35

    Article  CAS  Google Scholar 

  113. Mo SD, Ching W (1995) Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite. Phys Rev B 51:13023

    Article  CAS  Google Scholar 

  114. Mohajerina S, Mazare A, Gongadze E, Kralj-Iglič V, Iglič A, Schmuki P (2017) Self-organized, free-standing TiO2 nanotube membranes: effect of surface electrokinetic properties on flow-through membranes. Electrochim Acta 245:25–31

    Article  Google Scholar 

  115. Mohamed HH, Bahnemann DW (2012) The role of electron transfer in photocatalysis: fact and fictions. Appl Catal B 128:91–104

    Article  CAS  Google Scholar 

  116. Moniz SJA (2015) Visible-light driven heterojunction photocatalysts for water splitting—a critical review. Energy Environ Sci 8(3):731–759

    Article  CAS  Google Scholar 

  117. Moniz SJA, Shevlin SA, Martin DJ, Guo Z-X, Tang J (2015) Visible-light driven heterojunction photocatalysts for water splitting: a critical review. Energy Environ Sci 8:731–759

    Article  CAS  Google Scholar 

  118. Moniz SJA, Quesada-Cabrera R, Blackma, Tang CS, Southern JP, Weaver PM, Carmalt CJ (2014) A simple, low-cost CVD route to thin films of BiFeO3 for efficient water photo-oxidation. J Mater Chem A 2:2922–2927

    Google Scholar 

  119. Morikawa T, Asahi R, Ohwaki T, Aoki K, Taga Y (2001) Band-gap narrowing of titanium dioxide by nitrogen doping. Jpn J Appl Phys 40:L561–L563

    Article  CAS  Google Scholar 

  120. Moriya Y, Takata T, Domen K (2013) Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation. Coord Chem Rev 257:1957–1969

    Article  CAS  Google Scholar 

  121. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol, C 13:169–189

    Article  CAS  Google Scholar 

  122. Naldoni A, Allieta M, Santangelo S, Marelli M, Fabbri F, Cappelli S, Bianchi CL, Psaro R, Dal Santo V (2012) Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J Am Chem Soc 134:7600–7603

    Article  CAS  Google Scholar 

  123. Naldoni A, Altomare M, Zoppellaro G, Liu N, Kment STPN, Zboril R, Schmuki P (2019) Photocatalysis with reduced TiO2: from black TiO2 to cocatalyst-free hydrogen production. ACS Catal 9:345–364

    Article  CAS  Google Scholar 

  124. Naldoni A, D’Arienzod M, Altomare M, Marelli M, Scottis R, Morazzoni F, Selli E, Dal Santo V (2013) Pt and Au/TiO2 photocatalysts for methanol reforming: Role of metal nanoparticles in tuning charge trapping properties and photoefficiency. Appl Catal B: Environ 130–131, 239–248

    Google Scholar 

  125. Avarro erga RM, Alvarez-Galvan MC, Vaquerov F, Arenales J, Fierro JLG (2013) Chapter 3—hydrogen production from water splitting using photo-semiconductor catalysts. In: Gandía LM, Arzamendi G, Diéguez PM (eds) Renewable hydrogen technologies. Elsevier, Amsterdam

    Google Scholar 

  126. Ni M, Leung MK, Leung DY, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11:401–425

    Article  CAS  Google Scholar 

  127. Nian J-N, Teng H (2006) Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor. J Phys Chem B 110:4193–4198

    Article  CAS  Google Scholar 

  128. Ohtani B (2010) Photocatalysis A to Z—what we know and what we do not know in a scientific sense. J Photochem Photobiol C 11:157–178

    Article  CAS  Google Scholar 

  129. Ohtani B (2013) Titania photocatalysis beyond recombination: a critical review. Catalysts 3:942–953

    Article  CAS  Google Scholar 

  130. Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42:2294

    Article  CAS  Google Scholar 

  131. Oswald P, Clement O, Chambon C, Schouman-Claeys E, Frija G (1997) Liver positive enhancement after injection of superparamagnetic nanoparticles: respective role of circulating and uptaken particles. Magn Reson Imaging 15:1025–1031

    Article  CAS  Google Scholar 

  132. Paul A, Lauril T, Vuorinev V, Divinski SV (2014) Structure of materials. Thermodynamics, diffusion and the Kirkendall effect in solids. Springer International Publishing, Cham

    Google Scholar 

  133. Penn RL, Banfield JF (1999) Formation of rutile nuclei at anatase (112) twin interfaces and the phase transformation mechanism in nanocrystalline titania. Am Miner 84:871–876

    Article  CAS  Google Scholar 

  134. Peter LM (2016) Photoelectrochemistry: from basic principles to photocatalysis

    Google Scholar 

  135. Pichat P (2007) A brief overview of photocatalytic mechanisms and pathways in water. Water Sci Technol 55:167–173

    Article  CAS  Google Scholar 

  136. Plocek J, Hutlová A, Nižňansky D, Buršík J, Rehspringer J-L, Mička Z (2003) Preparation of ZnFe2O4/SiO2 and CdFe2O4/SiO2 nanocomposites by sol–gel method. J Non-Cryst Solids 315:70–76

    Article  CAS  Google Scholar 

  137. Pokrant S, Dilgre S, Landsmann S, Trotmann M (2017) Size effects of cocatalysts in photoelectrochemical and photocatalytic water splitting. Mater Today Energy 5:158–163

    Article  Google Scholar 

  138. Mangrulkar PA, Polshettiwar V, Labhsetwar NK, Varma RS, Rayalu SS (2012) Nano-ferrites for water splitting: unprecedented high photocatalytic hydrogen production under visible light. Nanoscale 4:5202–5209

    Article  CAS  Google Scholar 

  139. Pullar RC, Bhattacharya AK (2002) Crystallisation of hexagonal M ferrites from a stoichiometric sol-gel precursor, without formation of the α-BaFe2O4 intermediate phase. Mat Lett 57:537–542

    Article  CAS  Google Scholar 

  140. Qian R, Zong H, Schneider J, Zhou G, Zhao T, Li Y, Yang J, Bahnemann DW, Pan JH (2019) Charge carrier trapping, recombination, and transfer during TiO2 photocatalysis: an overview. Catal Today 335:78–90

    Article  CAS  Google Scholar 

  141. Raj K, Moskovitz BC (1995) Advances in ferrofluid technology. J Magn Magn Mater 149:174–180

    Article  CAS  Google Scholar 

  142. Ramadan W, Feldhoff A, Bahnemann D (2021 Assessing the photocatalytic oxygen evolution reaction of BiFeO3 loaded with IrO2 nanoparticles as cocatalyst. Solar Energy Mater Solar Cells 232:111349

    Google Scholar 

  143. Ramadan W, Kareem M, Hannoyer B, Saha S (2011) Effect of pH on the structural and magnetic properties of magnetite nanoparticles synthesized by co-precipitation. Adv Mater Res 324:129–132. Presented at the CIMA conference, Beirut-March

    Google Scholar 

  144. Ramakrishna S, Kazutoshik F, Teo W-E, Lim T-C, Zuwei M (2005) An introduction to electrospinning and nanofibers

    Google Scholar 

  145. Roonasi P, Mater NAY (2015) A comparative study of a series of ferrite nanoparticles as heterogeneous catalysts for phenol removal at neutral pH. Chem Phys 172:143–149

    Google Scholar 

  146. Scanlon DO, Dunnill CW, Buckeridge J, Shevlin SA, Logsdail AJ, Woodley SM, Catlow CRA, Powell MJ, Palgrave RG, Parkin IP, Watson GW, Keal TW, Sherwood P, Walsh A, Sokol AA (2013) Band alignment of rutile and anatase TiO2. Nat Mater 12:798–801

    Article  CAS  Google Scholar 

  147. Schnider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986

    Article  Google Scholar 

  148. Serpone N (2006) Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J Phys Chem B 110:24287–24293

    Article  CAS  Google Scholar 

  149. Serpone N, Lawless D, Khairutdinov R (1995) Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization versus direct transitions in this indirect semiconductor? J Phys Chem 99:16646–16654

    Article  CAS  Google Scholar 

  150. Sheng W, Myint M, Chen JG, Yan Y (2013) Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ Sci 6:1509–1512

    Article  CAS  Google Scholar 

  151. Shibata T, Sakai N, Fukuda K, Ebina Y, Sasaki T (2007) Photocatalytic properties of titania nanostructured films fabricated from titania nanosheets. Phys Chem Chem Phys 9:2413–2420

    Article  CAS  Google Scholar 

  152. Shichi T, Katsumata K-I (2010) Development of photocatalytic self-cleaning glasses utilizing metal oxide nanosheets. Hyomen Gijutsu 61:30–35

    CAS  Google Scholar 

  153. Shimura K, Yoshida H (2011) Heterogeneous photocatalytic hydrogen production from water and biomass derivatives. Energy Environ Sci 4:2467–2481

    Article  CAS  Google Scholar 

  154. Sousa MH, Tourinho FA, Depeyrot JJ, da Silva G, Lara MCFL (2001) New electric double-layered magnetic fluids based on copper, nickel, and zinc ferrite nanostructures. J Phys Chem B 105(6):1168–1175

    Article  CAS  Google Scholar 

  155. Steinfeld A (2002) Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. Int J Hydrogen Energy 27:611–619

    Article  CAS  Google Scholar 

  156. Su R, Forde MM, He Q, Shen Y, Wang X, Dimitratos N, Wendt S, Huang Y, Iversen BB, Kiely CJ, Besenbacher F, Hutchings GJ (2014) Well-controlled metal co-catalysts synthesised by chemical vapour impregnation for photocatalytic hydrogen production and water purification. Dalton Trans 43:14976–14982

    Article  CAS  Google Scholar 

  157. Tada H (2019) Overall water splitting and hydrogen peroxide synthesis by gold nanoparticle-based plasmonic photocatalysts. Nanoscale Adv 1:4238–4245

    Article  CAS  Google Scholar 

  158. Tada H (2019) Size, shape and interface control in gold nanoparticle-based plasmonic photocatalysts for solar-to-chemical transformations. Dalton Trans 48:6308–6313

    Article  CAS  Google Scholar 

  159. Taffa Dereje H, Ralf D, Ulpe AC, Bauerfeind Katharina CL, Thomas B, Bahnemann DW, Michael W (2016) Photoelectrochemical and theoretical investigations of spinel type ferrites (MxFe3−xO4) for water splitting: a mini-review. J Photonics Energy 7(1):012009

    Google Scholar 

  160. Takanabe K (2017) Photocatalytic water splitting: quantitative approaches toward photocatalyst by design. ACS Catal 7:8006–8022

    Article  CAS  Google Scholar 

  161. Tanka A, Teramura K, Hosokawa S, Kominai H, Tanaka T (2017) Visible light-induced water splitting in an aqueous suspension of a plasmonic Au/TiO2 photocatalyst with metal co-catalysts. Chem Sci 8:2574–2580

    Article  Google Scholar 

  162. Tiwari A, Mondal I, Pal U (2015) Visible light induced hydrogen production over thiophenothiazine-based dye sensitized TiO2 photocatalyst in neutral water. RSC Adv 5:31415–31421

    Article  CAS  Google Scholar 

  163. Tomas SA, Zelaya O, Palomino R, Lozada R, Garcia O, Yanez JM, Ferrereira Da Silva A (2008) Optical characterization of sol gel TiO2 monoliths doped with Brilliant Green. Eur Phys J Special Topics 153:255–258

    Article  Google Scholar 

  164. Tseng I-H, Wu JCS, Chou H-Y (2004) Effects of sol-gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. J Cataly 221:432–440

    Article  CAS  Google Scholar 

  165. Walter MG, Warren EL, Mckone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473

    Article  CAS  Google Scholar 

  166. Wanf B, Shen S, Mao SS (2017) Black TiO2 for solar hydrogen conversion. J Materiomics 3:96–111

    Article  Google Scholar 

  167. Wang C, Yin L, Zhang L, Liu N, Lun N, Qi Y (2010) Platinum-nanoparticle-modified TiO2 nanowires with enhanced photocatalytic property. ACS Appl Mater Interfaces 2:3373–3377

    Article  CAS  Google Scholar 

  168. Wang Q, Domen K (2020) Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem Rev 120:919–985

    Article  CAS  Google Scholar 

  169. Ramadan W, Dillert R, Koch J, Tegenkamp C, Bahnamnn D (2019) Changes in the solid-state properties of bismuth iron oxide during the photocatalytic reformation of formic acid. Cataly Today 326:22–29

    Google Scholar 

  170. Wu L, Mendoza-Garcia A, Li Q, Sun S (2016) Organic phase syntheses of magnetic nanoparticles and their applications. Chem Rev 116(18):10473–10512

    Article  CAS  Google Scholar 

  171. Xiang Q, Yu J, Jaroniec M (2011) Tunable photocatalytic selectivity of TiO2 films consisted of flower-like microspheres with exposed 001 facets. Chem Commun 47:4532–4534

    Article  CAS  Google Scholar 

  172. Xiong G, Shao R, Droubay TC, Joly AG, Beck KM, Chambers SA, Hess WP (2007) Photoemission electron microscopy of TiO2 anatase films embedded with rutile nanocrystals. Adv Func Mater 17:2133–2138

    Article  CAS  Google Scholar 

  173. Yamaguchi K, Matsumoto K, Fujii T (1990) Magnetic anisotropy by ferromagnetic particles alignment in a magnetic field. J Appl Phys 67:4493

    Article  CAS  Google Scholar 

  174. Yamakata A, Ishibashi T-A, Onishi H (2001) Water-and oxygen-induced decay kinetics of photogenerated electrons in TiO2 and Pt/TiO2: a time-resolved infrared absorption study. J Phys Chem B 105:7258–7262

    Article  CAS  Google Scholar 

  175. Yamakata A, Ishibashi T-A, Kato H, Kudo A, Onishi H (2003) Photodynamics of NaTaO3 catalysts for efficient water splitting. J Phys Chem B 107:14383–14387

    Article  CAS  Google Scholar 

  176. Yan X, Chen X (2011) Titanium dioxide nanomaterials. Encycl Inorg Bioinorg Chem 1–38

    Google Scholar 

  177. Yang L, Zhang Y, Liu X, Jiang X, Zhang Z, Zhang T, Zhang L (2014) The investigation of synergistic and competitive interaction between dye Congo red and methyl blue on magnetic MnFe2O4. Chem Eng J 246:88–96

    Article  CAS  Google Scholar 

  178. Yao T, An X, Han H, Chen JQ, Li C (2018) Photo electrocatalytic materials for solar water splitting. Adv Energy Mater 8:1800210

    Google Scholar 

  179. Yoshihara T, Katoh R, Furube A, Tamaki Y, Murai M, Hara K, Murata S, Arakawa H, Tachiya M (2004) Identification of reactive species in photoexcited nanocrystalline TiO2 films by wide-wavelength-range (400–2500 nm) transient absorption spectroscopy. J Phys Chem B 108:3817–3823

    Article  CAS  Google Scholar 

  180. Yu JC, Ho W, Yu J, Yip H, Wong PK, Zhao J (2005) Efficient visible-light-induced photocatalytic disinfection on Sulfur-doped nanocrystalline titania. Environ Sci Technol 39:1175–1179

    Article  CAS  Google Scholar 

  181. Yun H, Lee H, Joo J-B, Wooyoung K, Yi J (2009) Influence of aspect ratio of TiO2 nanorods on the photocatalytic decomposition of formic acid. J Phys Chem C J Phys Chem C 113:3050–3055

    Google Scholar 

  182. Zhang L, Mohamed HH, Dillert R, Bahnemann D (2012) Kinetics and mechanisms of charge transfer processes in photocatalytic systems: a review. J Photochem Photobiol, C 13:263–276

    Article  CAS  Google Scholar 

  183. Zhang X, Peng T, Song S (2016) Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production. J Mater Chem A 4:2365–2402

    Article  CAS  Google Scholar 

  184. Zhang X, Song P, Cui X (2013) Nitrogen-doped TiO2 photocatalysts synthesized from titanium nitride: characterizations and photocatalytic hydrogen evolution performance. J Adv Oxid Technol 16:131–136

    CAS  Google Scholar 

  185. Zhao T, Liu Z, Nakata K, Nishimoto S, Murakami T, Zhao Y, Jiang L, Fujishima A (2010) Multichannel TiO2 hollow fibers with enhanced photocatalytic activity. J Mater Chem 20:5095–5099

    Article  CAS  Google Scholar 

  186. Zheng Z, Huang B, Qin X, Zhang X, Dai Y (2010) Strategic synthesis of hierarchical TiO2 microspheres with enhanced photocatalytic activity. 16:11266–11270

    Google Scholar 

Download references

Acknowledgements

Some of the studies presented here were performed in the laboratory “Photoactive nanocomposite materials” and supported by Saint-Petersburg State University (ID: 91696387). Wegdan Ramadan, would like to acknowledge fund received from the Alexander von Humboldt Foundation towards the purchase of laboratory equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wegdan Ramadan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramadan, W., AlSalka, Y., Al-Madanat, O., Bahnemann, D.W. (2023). Synthesis of Magnetic Ferrite and TiO2-Based Nanomaterials for Photocatalytic Water Splitting Applications. In: Uddin, I., Ahmad, I. (eds) Synthesis and Applications of Nanomaterials and Nanocomposites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-99-1350-3_11

Download citation

Publish with us

Policies and ethics